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Abstract. We conducted a large-scale evaluation of some popular Anti-
Phishing Entities (APEs). As part of this, we submitted arrays of CAPTCHA
challenge-laden honey sites to 7 APEs. An analysis of the “click-through rates”
during the visits from the APEs showed strong evidence for the presence of
formidable human analysis systems in conjunction with automated crawler
systems. In summary, we estimate that as many as 10% to 24% of URLs
submitted to each of 4 APEs (Google Safe Browsing, Microsoft SmartScreen,
Bitdefender and Netcraft) were likely visited by human analysts. In contrast
to prior works, these measurements present a very optimistic picture for web
security as, for the first time, they show presence of expansive human analysis
systems to tackle suspicious URLs that might otherwise be challenging for
automated crawlers to analyze.
This finding allowed us an opportunity to conduct the first systematic study
of the robustness of the human analysis systems of APEs which revealed some
glaring weaknesses in them. We saw that all the APEs we studied fall prey
to issues such as lack of geolocation and client device diversity exposing their
human systems to targeted evasive attacks. Apart from this, we also found
a specific weakness across the entire APE ecosystem that enables creation
of long-lasting phishing pages targeted exclusively against Android/Chrome
devices by capitalizing on discrepancies in web sensor API outputs. We
demonstrate this with the help of 10 artificial phishing sites that survived
indefinitely despite repeated reporting to all APEs. We suggest mitigations
for all these issues. We also conduct an elaborate disclosure process with all
affected APEs in an attempt to persuade them to pursue these mitigations.

1 Introduction

As web-based social engineering attacks continue to rise in number and variety, it has
become imperative for security organizations to invest in systems that inspect web sites
for signs of maliciousness. Such systems are commonly referred to as Anti-Phishing
Entities (APEs) and play a critical and omnipresent role in preventing web users
from visiting harmful websites. For example, the Google Safe Browsing (GSB) service
is a popular APE that receives URL reports from users around the world and verifies
them. After verification, GSB sends malicious URLs to URL blocklists that are cur-
rently deployed in about 4 billion devices of users around the world [20]. It is to be noted
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that despite the name, APEs are not only meant for thwarting phishing attacks and
have the responsibility of identifying and blocking all kinds of malicious web content.

Given the scale of the web, it is reasonable to expect that a large proportion
of visits from these APEs are from fully automated web security crawler bots
which would likely be using machine learning techniques or carefully crafted heuristics
to detect whether or not a given candidate page is malicious. In order to foil such
attempts of these bots, attackers have begun to design and use phishing pages that
are fitted with CAPTCHAs in the initial landing pages [14,23]. Since CAPTCHAs
are inherently designed to prevent bots from bypassing them, they can be used
effectively as a cloaking vector against APEs. Thus, it has now become imperative
for APEs to augment security crawler bots with human analysis systems where
human security analysts manually inspect (a subset of) web sites reported to them.
Another important reason we expect APEs to have human analysis subsystems is for
evaluating the potential false positive and false negative cases that might inevitably
result from the bot-based automated analysis systems. Thus, these human analysis
systems are vital for functioning of APEs. In addition to such importance, human
analysis systems are by nature very expensive to maintain due to high labor costs.
Given this, it is crucial for organizations to maintain robustness of these expensive
human analysis systems to make sure they are not subject to targeted evasion attacks.
To the best of our knowledge, there has been no study to date that focuses on
evaluating the robustness of these human analysis subsystems of APEs.

In this paper, we attempt to fill this knowledge gap. We conduct the largest
study thus far on delineating the human-based visits made by APEs. The most
closely related work to ours is [13] which conducted a small scale study to detect the
capability of APEs to overcome CAPTCHA-based blockages. The study limited each
one of 7 popular APEs to 6 test phishing sites fitted with a CAPTCHA. However,
unfortunately, quite contrary to our expectations laid out above, this study has found
that none of the studied APEs were capable of clicking through CAPTCHAs in
potential phishing pages. For this paper, we attempted to repeat this experiment
albeit on a much larger scale. For this, we leveraged a scalable APE evaluation design
methodology recently proposed in [10]. This allowed us to submit multiple test site
sets of 100 sites each with different CAPTCHAs to each of 7 popular APEs. We
also utilized this opportunity to also collect a wider range of data that captures the
dynamic behavior of APEs when visiting websites. This data included all mouse,
touch and key press events as well as events garnered from other advanced web sensor
APIs such as Gyrometer, Accelerometer etc. To the best of our knowledge, this is
the first work to collect and analyze such biometric data from APEs. With a similar
setup, we also performed a user study involving 433 users in order to contrast this
biometric data with that of regular users in order to gauge the existence of anomalies
that can be abused by attackers for evasion attacks in the future.

In complete contrast to the results from [13], our study showed the existence of
a vibrant and powerful ecosystem of human analysts being employed by at least 4
of the 7 popular APEs that we studied. These are Microsoft SmartScreen, Google
Safe Browsing (GSB), Bitdefender and Netcraft. Our conservative estimates based
on CAPTCHA-solving rates show that these APEs are capable of arranging as many
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as 10-24% of submitted URLs to be visited manually by a human analysts. Thus,
our such high numbers show present-day APEs in a very positive light for the first
time in terms of their efforts to support formidable manual analysis systems. These
measurements present a very optimistic picture for web security as, for the first time,
they show presence of expansive human analysis systems to tackle suspicious URLs
that might otherwise be challenging for automated crawlers to analyze.

These new findings thus also allowed us to perform the first systematic study of the
robustness of these human analysis systems which revealed some glaring weaknesses
in them. We saw that all the APEs we studied fall prey to the same issues such as
lack of geolocation and client device diversity that exposes their human systems to
targeted evasive attacks. Significantly, our analysis reveals that even cumulatively,
the APEs are being affected by these issues. While prior works such as [17] have
helped improve network and device diversity [10], we find that these changes have
not carried over to the human analyst subsystems. For instance, while some APEs
are using more than 40 different countries as sources for their bot visits, all of them
seem to be using only one or two countries for sourcing traffic from human analysts.
Similarly, we observed that large APEs such as GSB and Outlook were only using
APE-specific browsers (such as ChromeOS and Microsoft Edge respectively) for their
human analysts despite them lacking in general popularity. Also, none of the APEs
are using mobile user agents for human vetting thus exposing users to potential
“mobile-only” malicious web pages that completely avoid human analyst systems. In
the case of Google Safe Browsing, we also saw evidence for some timing-based blind
spots as no human analyst visits have occurred during the weekends.

Interestingly, we also found that most of these problems are generally not as-
sociated with the automated bot systems of these APEs. This indicates that these
issues can likely be fixed easily for the expensive human inspection systems as well.
However, as an exception to this, we found one issue that is currently affecting all
APE systems purported to be visiting from Android/Chrome devices. Namely, we
found that none of these visits were giving away web sensor API data upon page load
in sharp contrast to most real Android/Chrome devices that do so in their default
configuration (as per our user study). We show that this discrepancy can be leveraged
to create long-lasting phishing pages tailored towards this very popular platform. We
suggest mitigations for all these issues. We conducted an elaborate disclosure process
with all APEs in an attempt to persuade APEs to pursue these mitigations and help
make a practical impact in improving the security posture of all APEs.

In summary, our contributions with this paper are as follows:

1. Delineation: With the help of a large-scale study, we demonstrate for the first time,
evidence for industry-wide use of elaborate human analysis systems by APEs.

2. Evaluation: We conduct the first systematic evaluation of the robustness of these
human systems and find multiple serious issues across different APEs that expose
them to targeted evasive attacks.

3. Impact: We suggest practical mitigations to resolve these issues and conduct an
elaborate disclosure process with the affected APEs.
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2 System Description

2.1 System Overview

The predominant goal of our project was to measure the prevalence of any human
analysis systems being deployed by popular APEs. If we found the presence of any
such human analysis systems, we had also planned to conduct forensic analysis on
such systems in an effort to evaluate their robustness to evasion attacks. In order to
support these goals, we built a measurement and data collection system for APEs.
An overview of this system is presented in Fig. 1.

Anti-Phishing Entities

Honey site domain lists
Honey site

User study

Motion biometrics FPs

Fig. 1: System Overview

The main component of our system is the honey server that is capable of serving
several identical honey sites that are designed for the measurements in this project.
Each honey site is fitted with a CAPTCHA in order to help us determine if the
visitor is human. The ethical considerations behind this design are discussed in Sec. 5.
We relied upon the APE evaluation approach proposed in [10] in order to make our
system scalable. Concretely, we registered multiple domain names and made them all
point to the same honey server. We then separated these domain names into disjoint
sets and submitted them to various APEs. These submissions thus elicited visits from
both the bot and human subsystems of these APEs. For each visit, we leveraged the
event knowledge of whether a relevant CAPTCHA challenge has been solved or not
as a data point to infer whether that visitor is human or bot.

Besides deploying CAPTCHA challenges, we also equipped each honey site with
two kinds of forensic recording capabilities as discussed below.

1. Motion biometrics. We embedded JavaScript code in our honey sites to
listen and record multiple Web API events generated from UI devices such as mouse
events (e.g. click, mousemove etc.), keyboard events (e.g. keyup, keydown etc.),
and Touch events (e.g. touchstart, touchmove). Furthermore, upon page load, we
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register event listeners for Web Sensor APIs to record data from common mobile-
specific devices such as gyroscope, accelerometer, magnetometer and light sensors.
As some of this data (such as movement data) is continuously generated as long as
visitors are on the honey site, we added the ability to offload the collected data to our
server every 500 ms in order to minimize the risk of losing data due to unexpected
network issues. We later analyze this collected data to reveal some interesting insights.

2. Browser fingerprints. We also fitted each of the honey sites with capabilities
to collect different valuable browser fingerprints from the visitors. Our plan was to
utilize this data to correlate visits across different honey sites. Source IP address and
HTTP request headers are some of the basic browser fingerprints that we collect
from a visitor. Apart from this, we also collect some other sophisticated browser
fingerprints. Recently, it has be shown that popular APEs can be easily identified
(and evaded) [10] based on HTML5 API-based fingerprinting techniques such as
Canvas [16] and WebGL fingerprints. For this reason, we utilized the browser finger-
printing code implementation in [10] to collect these two additional data points from
the visitors to our honey sites.

User study. While soliciting visits from APEs to our honey sites allowed us
to collect data from both bots as well as human analysis systems, we also collected
similar data from real humans. This enabled us to compare and contrast the set up
used by the human analysis systems of APEs in the context of how well they blend
in with systems used by regular humans. For this, we set up a user study in which
we requested each participant to solve the CAPTCHA challenges presented to them.
More details about this are described later in this section.

2.2 CAPTCHAs for honey sites

As mentioned previously, we wanted to use the ability of the visitors to solve
CAPTCHA challenges as a key data point to positively identify human visitors
from APEs to our honey sites. However, depending on only a single type of challenge
to differentiate between humans and bots is risky as APEs might utilize sophisticated
bots or other specialized solutions that might break such a challenge. Hence, instead
of relying on just a single challenge, we use an array of 7 CAPTCHAs ranging from
those that are easily by-passable to commercial as well as custom-built variants. We
describe them below along with our rationale for choosing them.

Easy CAPTCHAs. We crafted three CAPTCHAs which can potentially be
easily circumvented by a bot. These CAPTCHAs require the user to simply click on a
regular HTML clickable button or a form element or a JavaScript confirm() dialog
box. We refer to these as Click, Form and Popup CAPTCHAs respectively. Click
and Form challenges have to be solved by clicking on an element. They visually look
alike and are shown in Fig. 2a. These can be brute-forced easily by any web crawling
that uses an automated browsing tool (for example, Selenium [6] or Puppeteer [4]) to
click on all “clickable” elements in a page. When implementing these two CAPTCHAs,
we used a JavaScript function as the onclick event handler for the buttons to record
CAPTCHA success. However, these functions can also be called directly giving the
appearance of a successful button click to our backend server. Thus, this provides
for another simple bypass mechanism for bots which might be configured to blindly
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(a) Click / Form (b) Popup (c) Click

(d) reCAPTCHA v2 (e) Math (f) Shape

Fig. 2: Various CAPTCHAs deployed in honey sites used for studying APEs.

call event handler functions even without making any clicks whatsoever. The Popup
challenge pages trigger a function on page load which a Window.confirm() DOM
API call. If this call returns true, then passes a success indicator to our backend
server. For this to happen, the browsing agent needs to click on (or presses return

key) on the “OK” button on the JavaScript dialog that pops up (Fig. 2b). However, we
point that some previous security crawler setups have managed to automate JS dialogs
interactions with the help of in-browser code changes [21] or browser extensions [15]
which can be some potential ways to bypass this CAPTCHA in an automated fashion.

Commercial CAPTCHAs. As the CAPTCHAs above can potentially be brute-
forced or bypassed by an automated agent, these are not sufficient to confidently
separate humans from bots being used by APEs. Hence, we also used two CAPTCHAs
that are muchmore sophisticated and similar to the ones used in real websites. The first
one we used is a text CAPTCHA service provided by captchas.net [1] (Fig. 2c).
The second is a “behavioral” CAPTCHA from Google named reCAPTCHA
(version-2) [5]. This CAPTCHA asks visitors to click on a button to verify that they
are not a bot during which time a risk analysis engine checks static as well as dynamic
behavioral patterns of the visitor to determine if they are a bot or not (Fig. 2c).
In case of suspicion, the engine will lead the visitor to an image-grid based visual
CAPTCHA which the visitor will need to solve to prove they are human [5].

Custom CAPTCHAs. While the above mentioned commercial CAPTCHAs
are not very easy to solve in an automated fashion, it is not an impossible endeavor.
For example, researchers have demonstrated that an earlier version of Google’s re-
CAPTCHA can be broken easily by using a Convolutional Neural Network (CNN)
model [12]. More recently, it has been demonstrated that Generative Adversarial
Networks (GANs) can be used to solve generic versions of text CAPTCHAs at the
same rate as humans [22]. Furthermore, it is also possible for APEs to seek cooperation
from CAPTCHA providers in order to bypass them. This is especially possible if the
APE as well as the CAPTCHA provider are from the same organization. For example,
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Google’s Safe Browsing service can potentially have an internal arrangement with
Google’s reCAPTCHA service so as to allow their crawlers to automatically bypass
all their requests. In order to account for such potential automated bypasses, we
crafted two custom in-house variants of CAPTCHAs: Math and Shape CAPTCHA.

The Math CAPTCHA asks the visitor to give the output of a simple arithmetic
operation. It is to be noted that our intention here was to keep this CAPTCHA’s
functionality similar to existing Math CAPTCHAs such as [3] while at the same
time using our own code for implementation. In addition, we also built a new custom
CAPTCHA named Shape CAPTCHA. It simply asks the visitor to click on a
random geometric shape made of a random color (Fig. 2f).

Thus, we design our CAPTCHA challenges above and separate them into 3
categories with an expectation that they are going to be increasingly difficult to be
solved by an automated bot. However, we clarify that our goal with these challenges
is not to create any CAPTCHA that is impossible for bots to solve. We concede that
even our custom challenges can be tackled successfully by APEs if they tailor their
bots after analyzing some samples of our challenges. Instead, our goal here is simply
to utilize multiple CAPTCHAs so as to enable collection of data on click-through
rates from multiple vantage points and then correlate this information with other
forensic data from these visits in order to estimate the extent of human analysis
components being deployed by present-day APEs.

2.3 Experimental Setup

We will now describe the experimental setup we used for the measurements and
analysis we performed for this paper.

Anti-phishing entities. We tried to cast a wide net in terms of the anti-phishing
entities we consider for this work in order to ensure our results are generalizable across
the spectrum of APE providers. The prior work [13] which first attempted to study the
human analysis systems of APEs focused on 6 providers in their main analysis. Out of
these 6, PhishTank has disabled new user registrations to their web portal for submit-
ting URL reports and was hence left out of consideration for this paper. We included
the remaining 5 providers in our analysis: Google Safe Browsing (GSB), Microsoft
SmartScreen, APWG, Netcraft and OpenPhish. Further, we also added two other
APEs in our analysis: Bitdefender and ZeroCert. As in [10], using Python and Selenium-
based browser automation, we created a system to be able to send URL reports contain-
ing links to our honey sites to the web portals of these 7 providers at a preset frequency.

Honey sites. For each of the 7 APEs and 7 CAPTCHAs we considered, we
created 100 honey sites. Thus, throughout our experimentation period, we submitted
700 honey sites to each of the 7 APEs. We utilized a distinct and new domain name
for each honey site but due to financial restrictions we could only register 10 new
second-level domain names (TLD+1) for this entire experiment. We created unique
TLD+2 domains for the honey sites uniformly under these 10 TLD+1 domains. These
domains were registered under the popular .com TLD as well as other extensions
often abused by phishing actors such as .xyz, .site and .club. We relied on wild-
card DNS records and .htacess rewrite rules in the web server to support these
TLD+2 domains for all the 4900 sites utilized in our study. We note that this practice
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of relying upon a handful of TLD+1 domain names to conduct a large-scale analysis
of APEs has been demonstrated to be a viable method in [10]. We avoid discussing
this design rationale here for brevity but instead refer interested readers to [10] for
detailed arguments as well as experimental results supporting this approach.

We spread out these 700 URL submissions to each APE over a five week period
in March and April 2021 averaging about 20 per day.

User study. For our user study, we first sought an IRB exemption from our
university and then used Amazon’s Mechanical Turk (MTurk) platform to recruit
participants for clicking through the CAPTCHAs on our honey sites. For this, we
created a dedicated honey site with 7 different web pages for each of the 7 CAPTCHA
challenges. As explained before, these pages are identical to the pages on honey sites
distributed to the APEs. We set up this study as 7 different user surveys on MTurk
in order to ensure that no same participant visits a particular challenge page more
than once. We conducted this study over a one week period in the first week of April
2021. Overall, each of our 7 web pages were visited 210 times thus generating a total
of 1470 visits in the user study. Based on data provided by MTurk and IP address
information, we were able to attribute these visits to 433 unique participants from
about 26 different countries all over the world.

3 Delineation of Human Analysis Systems

The experiment described previously yielded data about the click-through rates of
APEs for various CAPTCHAs as shown in Table 1. In the table, the first “Visits”
sub-rows for all APEs show information about the number of visits (i.e. HTTP
sessions) that were made to the honey sites of different categories that we submitted.
Specifically, the first sub-columns (marked by xy) show the number of visits in
which the given category’s CAPTCHA challenge was solved successfully and is hence
indicative of a human visit. The second “All” sub-columns represent the total number
of visits made for each of the 100 sites submitted in a given category irrespective
of whether the challenge was solved. It is to be noted how many of these numbers
are more than 100 as APEs often make repeated visits to a submitted site. The next
“Sites” sub-row for each APE shows these same counts at a “site-level” i.e. the number
of unique sites whose CAPTCHA pages were clicked-through or visited by APEs out
of a maximum of 100 for each category. Analysis of the number of unique sites visited
shows that our submission module has successfully solicited requests from APEs in
most cases. Except for Bitdefender, most other APEs have visited most of the sites
we submitted to them. APWG, Netcraft, OpenPhish and ZeroCert in particular,
have visited all 700 sites that we submitted to them at least once. Across all APEs,
we can infer that many sites are visited multiple times by the large amount of visits
for each category of submitted sites. These results indicating very high scan-back
rates and repeated visits agree with prior recent results from [10].
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One key thing to observe from Table 1 is that 4 APEs, namely, Bitdefender, GSB,
SmartScreen and Netcraft, have had significant and consistent success in clicking
through the entire spectrum of our challenges including customized CAPTCHA
challenges. This indicates high likelihood of a human analysis component in their
systems. These 4 APEs are highlighted in blue color in the table and we focus most
of our attention on these in the rest of this paper. Other than a couple of exceptions,
these 4 APEs have been able to click-through at least 10% of the submitted sites
across all challenges. This result indicates a stark contrast from the results presented
in [13] which showed that practically none of the APEs studied were able to solve
the CAPTCHAs presented to them. While we cannot ascertain the reason for this
difference, we surmise that this could either be due to the small scale of their exper-
iments which occluded these insights or the early timeline of their experiments at
which time APEs have potentially not yet deployed the human analysis systems.

When looking at the success rates of submitted sites, 5 CAPTCHA/APE com-
binations (highlighted in gray) stand out in terms of anomalously high click-through
rates in comparison to other numbers in the same rows1. For example, GSB made
192 successful visits to Popup challenge pages while the number of successful visits
to all other challenges were only around 30. Similarly, Bitdefender visited 71 Popup
pages successfully while the rest of the pages had a maximum of 20 visits. Netcraft
made 111 and 116 successful visits to Click and Form challenge pages while the
remaining categories solicited only about 15 successful visits. Finally, ZeroCERT was
only successful in solving Popup challenges. It is to be noted that all these 5 cases
involve Easy category CAPTCHAs which as we mentioned previously can easily be
tackled by automated crawler setups. We suspected that this is the case with these
pages and conducted a clustering analysis that helped us identify such cases in a
generic, non-heuristic manner. We discuss this below.

3.1 Filtering automated crawler visits

As discussed in the previous section, our honey sites collected the Canvas and WebGL
browser fingerprint information as well as motion biometrics data from all the visits.
For each of the APEs, we leveraged this information to cluster all the successful
CAPTCHA solving visits that were made to our sites. The results of this clustering
process were very insightful. We noticed that across multiple APEs, there were a few
clusters where all of the component visits had no motion biometric data whatsoever
(i.e. keyboard, mouse or touch data) despite solving the challenge each time. Since it
is not possible for a human analyst to solve these challenges without such movement
we consider these as actions of automated analysis systems. Interestingly, for each
APE, all these “no-motion” clusters corresponded with the 5 APE/CAPTCHA
combinations (the gray cells in the table) which we already suspected. As a result,
we decided to discount all the visits that were parts of these clusters from the human
analysis components of our study. The resulting numbers after these deductions are
shown in the table itself.

1 Please refer to the numbers that were struck through in the gray cells in Table 1
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It is to be noted how these deductions greatly decreased the numbers in the
suspected cases and made the human visit counts for all 4 APEs ultimately much more
uniform across different challenges. These deductions show that GSB, Bitdefender and
ZeroCERT used bots to solve Popup CAPTCHA challenges and that Netcraft used
bots for solving large numbers of Click and Form CAPTCHA. This is likely using
the mechanisms we already discussed in Sec. 2.2. Interestingly, after these deductions
we can see that Netcraft has a 1 to 1 correspondence for sites and visits from human
systems for all challenges. This means that with Netcraft, human analysts typically do
not revisit a visited site unlike in the case of the other APEs. Another interesting thing
to note in is the absence of any evidence for bot-assisted challenge solving for GSB’s
reCAPTCHA challenges despite both GSB and reCAPTCHA services belonging to
Google. GSB’s automation seemed to only be limited to Popup challenges.

3.2 Human systems’ impact analysis

The last column of Table 1 indicating the summary statistics of human visits for each
APE paints a very optimistic picture. In summary, the 4 APEs were able to visit
between 10% and 24% of the submitted sites. These are very impressive numbers given
that APEs such as Google Safe Browsing receive billions of URL reports everyday [2].
This shows that current APEs have likely invested large amounts of financial resources
towards building these expansive human analysis systems. Assuming that each APE
has an independent mechanism for deciding if a submitted site will be viewed by
human analyst, we can also compute the probability for a candidate site that is
submitted to all the APEs to be inspected by a human. Concretely, let pi denote
this probability for each APE. Then, the summary probability can be computed by
1−

∏4
i=1(1−pi) which gives a formidable probability value of 43% for human analysis

of a candidate site. In addition, it should also be noted that we only made a single
submission of report to APEs for each honey site from a single end point. In the real
world, large-scale social engineering attacks will often trigger repeated reporting of
the complicit URLs from diverse sources. In such a case, it is possible for this manual
analysis probability to be even more than computed here.

4 Evaluation of Human Analysis Systems

The previous section demonstrated that multiple APEs built elaborate human analysis
systems which are arguably much more expensive to maintain and scale than their
bot counterparts. Given this, it is very important to ensure that these systems are
robust and do not carry any undue weaknesses. In this section, we focus on studying
the prevalence of any such issues which can potentially enable targeted cloaking
attacks against human analysis systems in the future.

4.1 Geolocation-based evasion attacks

Prior works have advocated the use of diverse geolocations for APEs when visiting
candidate phishing sites in order to thwart geolocation-based cloaking techniques
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used by attackers [17]. More recent work has shown that many APEs have in fact
heeded this recommendation and heavily diversified the network infrastructure used
for visits to the candidate sites [10]. We now investigate if the diversification has also
made its way to the human analysis systems used by APEs. For this, we compare
the network diversity of visits coming from human analysts with the overall network
diversity of the visits. These results can be seen in Table 2 which shows the distinct
number of IP addresses (IP) as well as countries associated with these IP addresses
in the two sets of data for each APE. We also repeat the numbers about site visit
counts for the two sets in order to present a context for this comparison.

APE
Sites IP Country

x All x All x All

APWG - 700 - 3793 - 14
Bitdefender 112 270 37 940 1 (Romania) 40
GSB 168 676 85 843 1 (India) 2
SmartScreen 154 589 100 326 1 (India) 13
Netcraft 70 700 14 1633 2 (UK: 97%) 49
OpenPhish 4 700 - 4452 - 63
ZeroCERT - 700 - 3 - 1

Table 2: Table demonstrating the lack of diverstiy of geolocation in requests made by
the human analysis systems across different APEs.

Firstly, we can see that the data in the “All” column are mostly in agreement with
prior results in [10] and show that APEs are persisting to invest in diversification of the
network infrastructure used for vetting websites. For instance, OpenPhish used 4452
IP addresses and APWG used 3793 IP addresses to visit the 700 sites we submitted to
them. Similarly Netcraft used 1633 addresses for crawling the 700 sites submitted to
them. However, their human analysis system, on the other hand, visited 70 sites using
only 14 different IP addresses showing a vast difference in the ratio of IP addresses used
to the number of sites visited between the two cases (2.33 for all vs. 0.2 for the human
system). Same is the case for IP addresses of other APEs as well. These differences
become even more stark when we consider the country associated with these IP
addresses. While Bitdefender uses 40 different countries all over the world for visiting
candidate phishing sites, their human analysis system uses only IP addresses belonging
to Romania for this purpose. Similarly, 97% of Netcraft’s human system visits (68/70
visits) are from UK, although overall, they use IP addresses from 49 different countries.
It is to be noted here that Bitdefender is head quartered in Romania while Netcraft is
headquartered in UK which likely explains why these countries were chosen by them
for hosting their human analysis systems. On a similar note, GSB and Microsoft
SmartScreen are only using IP addresses from India for all their human analysis system
visits. Thus, even though all of these are global companies with users all over the world,
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an attacker can easily avoid their elaborate human analysis systems by simply ignoring
potential victims from a handful of countries. Concretely, if an attacker can set up
an evasive malicious site that specifically serves benign content to India, Romania
and UK, our results show that majority of human analysis visits can be evaded.

Mitigations. We strongly recommend APEs to adopt network request diversi-
fication infrastructure for their human analysis systems to avoid geolocation-based
evasion attacks discussed above. This can be easily achieved with the help of solutions
such as commercial VPNs which can provide support for switching between multiple
IP addresses globally. Our results above which indicate the general visits of APEs
coming from a large number of geolocations already points to the fact that APEs
are already potentially using such mechanisms for their bot analysis systems. Upon
further analysis of the data pertaining to visits from diverse geolocations, we found
an interesting case study regarding Bitdefender. We noticed that 54 honey sites
submitted to Bitdefender had HTTP sessions in which each session involved HTTP
requests from IP addresses in 2-5 diiferent countries all over the world. Collectively,
we noticed that IP addresses from 13 different countries were used for this. While
switching IP addresses mid-session might unfortunately make these mechanisms
conspicuous and thus make the IP addresses fingerprintable by attackers, nevertheless,
this is still a step in the right direction. Proper implementation of such IP address
switching mechanisms (without any side channels such as session cookie sharing) in
human analysis systems can make them thwart geolocation-based evasion attempts
by attackers. We thus recommend APEs to pursue such tactics.

4.2 User Agents

Another important issue pointed out in [17] was the effectiveness of certain “device-
type” based cloaking attacks on APEs. For example, their research showed that a
phishing website set to distribute malicious content only to mobile (Android/iOS)
user-agents tends to be very resistant to blocklisting. As a result, APEs have evolved
tremendously to improve user agent diversity as was evidenced in [10]. We also
attempted to measure this with our our data. Table 3 demonstrates this. The second
column in the table shows the popularity of OS/Browser combinations as per our
user study. While the source of our user study participants (Amazon MTurk), might
have biased the data towards more desktop users than normal, we believe that the
proportion of users using various platforms in desktop and mobile platforms is still
a good indicator of the popularity of user agents as it falls in line with results from
larger studies [7]. The “All Requests” part of the table shows the probability that
a domain visited by any of the APEs will be done so with a particular User-Agent

header as per our data. We marked any probability value less than 0.1 in red and
any value more than 0.5 in green to highlight good and bad values. Note that these
values often sum up to more than 1 as the same domain submitted to an APE is
often visited from multiple platforms. For the ”Combined” column, we treat these
individual probabilities as being related to a random event and obtain the combined
probability for a domain that is submitted to all APEs to be visited by a particular
user agent. To clarify, assume pi is the probability for a user agent to be visited
by an APE i. We compute the combined probability for a visit from the same user



14 Bhupendra Acharya and Phani Vadrevu

agent by computing 1−
∏n

i=1(1−pi). The results confirm those in [10] that APEs
have largely evolved to improve diversity in the user agents they use to vet candidate
phishing pages. We can see that even the lowest combined probability is about 0.25 for
Windows/Opera thus showing that all popular user agents are adequately represented
(cumulatively) by the APEs. Of particular note is Bitdefender and OpenPhish both
of which have a significant amount of visitors from a diverse set of user agents.
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Windows/
Chrome

279/433
(0.64)

0.51 0.74 1.00 0.10 0.95 1.00 0.00 1.00 0.82 0.00 0.18 0.14 0.87

Windows/
Firefox

32/433
(0.07)

0.82 0.32 0.00 0.00 0.46 0.14 0.00 0.94 0.12 0.00 0.00 0.01 0.14

Windows/
Edge

18/433
(0.04)

0.14 0.07 0.08 0.91 0.00 0.14 0.00 0.94 0.02 0.00 0.82 0.00 0.83

Windows/
Opera

6/433
(0.01)

0.00 0.14 0.00 0.00 0.00 0.12 0.00 0.25 0.00 0.00 0.00 0.00 0.00

Android/* 40/433
(0.09)

0.04 0.14 0.00 0.00 0.69 0.14 0.00 0.78 0.00 0.00 0.00 0.00 0.00

macOS/* 33/433
(0.08)

0.09 0.16 0.00 0.00 0.26 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

ChromeOS/* 13/433
(0.03)

0.00 0.00 0.38 0.00 0.00 0.00 0.00 0.38 0.00 1.00 0.00 0.00 1.00

Linux/* 7/433
(0.02)

0.01 0.28 0.00 0.00 0.34 0.17 0.43 0.78 0.05 0.00 0.00 0.84 0.85

iOS/* 5/433
(0.01)

1.00 0.18 0.00 0.00 0.97 0.15 0.00 1.00 0.00 0.00 0.00 0.00 0.00

Table 3: Lack of diversity in the browsing agents used for human analysis systems of
APEs. The numbers in the cells indicate the probability that a given APE will visit a
submitted site with a given User-Agent header. Values above 0.5 are in green and
below 0.1 are in red.

The corresponding probability that a human analyst will use a particular user
agent is on the last section of the table. We only consider the 4 main APEs which
had human visitors for this. These probabilities are also combined similar to the other
section and are in great contrast with the other one. In particular, we can see that
there is not a single human request from Android, iOS, macOS, Windows/Opera
user agents from even a single APE. This leaves all these popular platforms exposed
to targeted evasion attacks that completely avoid human analysis. Note that as this
includes both Android and iOS, this finding means that all mobile users can be
exposed to targeted phishing attack pages that can evade all human analysis. It is also
interesting to see the user agent diversities for human analysis systems of individual
APEs. We note that all GSB systems simply use Google’s own Chrome OS based
systems for all of their human analysis despite them being not very popular in the
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wild. Similarly, SmartScreen’s human analysis systems are predominantly using the
Microsoft’s own Edge browsers for this. Both of these APEs are thus largely using
uncommon browsing agents leading to potential cloaking attacks. It is also interesting
to see how Bitdefender also has a great lack in diversity in their human systems
(compared to their general requests) although they fare better than Google and
Microsoft by atleast using the most popular “Windows/Chrome” user agent for all
their visits thus protecting at least a majority of users from targeted evasion attacks.

Mitigations. We strongly recommend APEs to improve user agent diversity for
their human analysis systems. However, this is arguably a complicated problem. While
simple measures such as adopting user-agent changing extensions [8,9] might seem
to solve this problem on the surface, APEs will face a risk of creating new browser
anomalies which miscreants can abuse to fingerprint or evade analysis systems [10].
Another more viable solution is to truly improve diversity in the systems used by
human analysts by adopting diverse browser/OS platforms for their systems. At the
very least, all popular desktop and mobile platforms used by majority of users should
be covered by these analysis systems.

4.3 Timing blind spots

We next measured the time it takes for human analysts of different APEs to first visit
a submitted site. The median times for different APEs varied with Bitdefender and
SmartScreen being the fastest APEs with less than 4 hours of human response time.
GSB was the slowest with a median turnaround time of about 30 hours. This is very
slow compared to GSB’s overall median response time of only about 34 minutes; but
this is understandable as this figure includes automated crawlers which are expected
to be more responsive. However, we were still intrigued by this relatively low response
time of GSB’s human analysis system in comparison to other APEs and investigated
this further. For this, we mapped the time of visits from human analysts into Indian
Standard Time (IST) as we saw previously that all GSB human visits were from IP
addresses in India. The graph depicting the day of these visits in Figure 3 shows that
none of the 190 visits from GSB happened over the weekends (per IST). This is likely
because the human analyst system was being run in a typical office like setup that
does not operate over the weekends. However, this can be abuse by attackers. For
example, a social engineering attacker who starts a campaign on Friday night can
effectively have two full days before the attack is analyzed by a human from GSB.
This leaves a sufficiently large time gap for a large-scale campaign.

Mitigations. Such timings blind spots need to be plugged by APEs by pro-
moting capabilities for human analysis at least on a daily basis. If such changes are
infeasible due to financial restrictions, then another potential approach could be
to share candidate phishing URL data with other APEs that have complementary
human analysis capabilities.

4.4 Sensor API-based mobile evasion attacks

As described in Sec. 2, one of the novelties of our experimental setup was the collection
of biometric data from APEs such as information about keyboard, mouse events
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Fig. 3: Daily visits of GSB analysts

Fig. 4: Uncloaked and cloaked sensor API-
based phishing pages

as well as other events from sensor devices. Therefore, we explored the possiblity of
developing evasive attacks against APEs by using this data. Interestingly, while human
visits from APEs did result in keyboard and mouse data, we were unable to collect
any sensor data from any of the APEs we studied. Note that none of the APE visits
had any web sensor data even when they proclaimed to be coming from mobile user
agents. This is anomalous as our tests with multiple Android/Chrome devices showed
that they all emit sensor data from the Accelerometer as well as deviceMotion

web APIs in their default settings. In order to remove personal bias, we also performed
the same analysis on 35 users in our MTurk study and found that all of them were
also emitting data from the accelerometer API and deviceMotion APIs thus
showing that many users do not change the default settings on these devices. Our
data analysis also showed that all the affected Android/Chrome devices emit the first
movement data with in the first few seconds (median time = 2.5 seconds). On the
other hand, all the user agents for whom the accelerometer/deviceMotion web
APIs are inaccessible due to user permission issues or lack of support (such as in the
case of APEs) throw an error message during page load itself. We thus concluded that
it will be possible to create effective phishing sites capitalize on these anomalies to
target Android/Chrome users. Given that Android/Chrome is one of the most popular
mobile user agents (35/45 mobile users in our study), this attack can leave a lot of
users exposed to pages that conduct targeted social engineering attacks with impunity.

Evaluation. We implemented the cloaking logic in JavaScript and PHP and regis-
tered 10 new domain names to host 10 evasive phishing sites for evaluation. All of these
sites show a “Bank of America” phishing page for any Android/Chrome user agent that
emits accelerometer and deviceMotion data. On the other hand, if there is any
error in accessing these web APIs or if there is a 10 second timeout without any such
data emissions, we display a cloaked page to the user as in Fig. 4. As baseline, we also
created 5 phishing sites that show the same phishing page without any cloaking logic.
We started the evaluation in July 2021 when we reported all 15 sites to the 7 APEs we
considered in this paper. On the very first day of this experiment, after our reporting,
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all 5 baseline sites got blocked in all major web browsers with GSB blocklisting them
in as little as 2.5 hours. This figure is in line with prior studies [17,10] and shows that
the phishing pages we created are considered as malicious by APEs. Upon noticing
that none of the 10 evasive sites got blocked, we continued to report these 10 sites
daily over the next two weeks to all 7 APEs. Despite this, all of these 10 sites remained
unblocked indefinitely until now spanning a period of more than seven months.

Mitigations. We showed that it is possible to create evasive phishing attacks
against Android/Chrome platform due to two main reasons: (1) None of the APEs’
human analysis systems perform testing using Android/Chrome devices. (2) None of
the APE’s general visitors that purport to use Android/Chrome user agents (likely
bots) emit web sensor API data similar to how the real devices behave. Solving
either of the problems will help thwart this attack vector. As already discussed
earlier, the mitigation for (1) is to simply support more diversity in the devices
used by human analysis systems of APEs. To handle (2), one potential solution
is to improve the automated crawler technology used by the APEs emit fake web
sensor data similar to real devices. We already saw similar methods being used by
Netcraft in a lot of their failed visits to our CAPTCHA pages where the visitors
were inputting random repeated textual content into text boxes. APEs should adopt
similar approaches for the web sensor APIs as well. A much simpler and comple-
mentary approach to eliminate this entire attack surface is for Android or Chrome
developers to disable this default configuration of allowing websites access to these
sensor APIs. This action which will be in line with other mobile OSs (such as iOS)
and browsers (such as Firefox) will also have the added benefit of improving user
privacy as prior research has shown that these APIs can be used for fingerprinting
attacks [11].

Other attacks. While most of the above evasive attacks were mainly focused on
the human analysis systems, our data analysis also revealed some weaknesses in what
are most likely the automated crawler systems being used by APEs. For example, all
of GSB’s visits that were solving Popup challenges from non-India IP addresses were
solving the challenges in less than a second. This is in sharp contrast to the solution
times for GSB’s human analysts as well as our user study participants that took at
least 10 seconds. Such timing discrepancies can easily be utilized to identify APE bot
IP addresses and them to a blocklists in phishing kits as is often done in the wild [18].
Similarly, we notice that all of the APEs ecosystems (human+bot) continue to lack
heavily in diversity of browser fingerprints which keeps them prone to evasive attacks
as proposed in [10]. We avoid discussing this in detail here as similar issues that affect
all APE ecosystems have been tackled in earlier works. Instead, we chose to only focus
on those issues that largely affect the human analysis systems of APEs in this paper.

5 Discussion

Conservative estimates. In this paper, we primarily relied upon the event of
whether a visitor is solving a particular CAPTCHA challenge in order to deduce if
that visitor is human. However, there might be human analysts who do not solve
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some CAPTCHA challenges as a result of a notion that our pages are not suspicious
enough to warrant inspection. We thus concede here that the numbers presented in
Sec. 3 might be a lower-bound on the actual size of human analyst systems being
used by APEs. This only means that the APEs are spending even more resources
to host such analysis systems than what was implied earlier and is hence even more
important to take measures to protect them form evasion attacks.

Further, since the cases in which analysts are solving CAPTCHA challenges can be
considered a random subset of all cases of human visits, we expect the same outcomes
as in Sec. 4 when analyzing the set of all human visits as well. In order to demonstrated
this, we used GSB as a case study. We repeated the browser fingerprint-based cluster-
ing we described earlier for all visits from GSB irrespective of whether the visit resulted
in a CAPTCHA solution. 3 of the 4 clusters that we determined in Sec. 3 to be coming
from humans have now “expanded” on their size and included several visits where the
challenges were not solved but shared the same fingerprints. In total, these clusters
were covering 258 distinct sites (in 295 visits) instead of the 168 distinct sites where
challenges were solved thus indicating an even healthier human-analysis rate of 37%.
However, as expected, all the weaknesses remain the same with this expanded dataset
of probable human visits as well. For example, all the 295 visits were from Indian IP ad-
dresses with Chrome OS user agents none of which have happened over the weekends.

Industry disclosure. We have conducted an elaborate industry disclosure pro-
cess with all four affected APEs. As part of this, we have disclosed all of our findings
in the form of detailed reports describing our experimental procedures and the weak-
nesses we discovered in their human analysis systems. In the case of Google, we have
also disclosed information about the evasive phishing attacks we were able to launch
against the Android/Chrome ecosystems which can easily be addressed by turning off
the default emission of web sensor API data similar to other platforms. The response
from APEs has been positive with one APE mentioning that multiple internal bug
reports have been filed as a result of our disclosures.

Ethical considerations. Our APE evaluation setup involved sending honey site
URLs to APEs. We limited these submissions to only about 20 per day which is much
smaller in comparison to the large number of suspicious URLs vetted by these APEs
everyday. Further, based on our server logs, we estimate that the total time spent by
the human analysts of all the APEs vetting our CAPTCHA-laden honey pages is only
about 1.2 hours. We thus argue that the small temporary overhead experienced by
the APEs during our experimental period far outweighs the security benefits gained
by the insights we present in this study. Our setup is also similar to prior studies
on APEs such as [17,19,10] all of which involved submitting similar honey URLs
to APEs. Similar to these prior works, we made the phishing pages described in
Sec. 4.4 non-functional in order to prevent accidental sensitive information input from
random visitors. Finally, our user study received exemption from the university IRB
board and we also sought prior approval from the participants describing all the data
collection methodologies before directing them to the CAPTCHA challenge pages.
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6 Related Work

As discussed in Sec. 1, despite phishing being an old problem, only recently has the
research community begun to focus its attention on studying the robustness of APEs
with studies such as [17,19,13,23,10]. Among these, only [13] (and a small part of [23])
have tried to focus on the ability of APEs to overcome CAPTCHA-based cloaking
challenges. However, they have concluded that APEs were largely incapable of solving
such challenges. In sharp contrast to this, our study showed strong evidence that
multiple APEs do in fact have ability to solve a large portion of such challenges there
by indicating presence of elaborate human analysis systems complementing their
automated crawler infrastructure. We attribute this difference to either the gap in the
timelines of these studies during which time APEs could have potentially improved
or the larger scale of our evaluation experiments. We relied on a recently proposed
APE evaluation methodology [10] for achieving this scale. Our discovery of human
analysis systems in the APEs thus allowed us an opportunity to conduct the first
systematic study of the robustness of the human analysis systems of APEs which
revealed several weaknesses in these systems as presented in Sec. 4.

7 Conclusion

We conducted a large-scale study that tests the ability of 7 popular APEs to over-
come CAPTCHA-based challenges. Through this, we provide strong evidence for
the presence of an elablorate human analysis system in 4 of the 7 APEs we studied.
These are: GSB, SmartScreen, Bitdefender and Netcraft. While this measurement
bodes well for the web security community, unfortunately, our study went on to show
some grave weaknesses which can be abused by future attackers to launch evasive
attacks against these elaborate human analysis systems. Interestingly, many of these
weaknesses can be easily mitigated and are already being done so in most of the
automated crawler systems of these APEs. We thus provided recommendations to
APEs for doing the same with the expensive and vital human analysis systems as
well. Our work in this paper is therefore crucial to help improve the current security
posture of Anti Phishing Entities (APEs).
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