
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

PhishPrint: Evading Phishing Detection
Crawlers by Prior Profiling
Bhupendra Acharya and Phani Vadrevu,

UNO Cyber Center, University of New Orleans
https://www.usenix.org/conference/usenixsecurity21/presentation/acharya

PhishPrint:
Evading Phishing Detection Crawlers by Prior Profiling

Bhupendra Acharya
UNO Cyber Center

University of New Orleans
bacharya@uno.edu

Phani Vadrevu
UNO Cyber Center

University of New Orleans
phani@cs.uno.edu

Abstract
Security companies often use web crawlers to detect

phishing and other social engineering attack websites. We
built a novel, scalable, low-cost framework named PhishPrint
to enable the evaluation of such web security crawlers against
multiple cloaking attacks. PhishPrint is unique in that it
completely avoids the use of any simulated phishing sites and
blocklisting measurements. Instead, it uses web pages with
benign content to profile security crawlers.

We used PhishPrint to evaluate 23 security crawlers
including highly ubiquitous services such as Google Safe
Browsing and Microsoft Outlook e-mail scanners. Our
70-day evaluation found several previously unknown cloaking
weaknesses across the crawler ecosystem. In particular, we
show that all the crawlers’ browsers are either not supporting
advanced fingerprinting related web APIs (such as Canvas
API) or are severely lacking in fingerprint diversity thus
exposing them to new fingerprinting-based cloaking attacks.

We confirmed the practical impact of our findings by de-
ploying 20 evasive phishing web pages that exploit the found
weaknesses. 18 of the pages managed to survive indefinitely
despite aggressive self-reporting of the pages to all crawlers.
We confirmed the specificity of these attack vectors with
1150 volunteers as well as 467K web users. We also proposed
countermeasures that all crawlers should take up in terms
of both their crawling and reporting infrastructure. We have
relayed the found weaknesses to all entities through an elab-
orate vulnerability disclosure process that resulted in some
remedial actions as well as multiple vulnerability rewards.

1 Introduction
The web has been seeing an increasing amount of social

engineering attacks of late. Web-based social engineering
attacks such as phishing and malvertisements [45] have been
on the rise [14, 15, 33]. URL Blocklisting services such as
Google’s Safe Browsing (GSB) and Microsoft’s SmartScreen
have been working as front-line defenses in protecting the
users against these kinds of attacks. Most web browsers
lookup domain names in these blocklists before proceeding
to display the web pages to the users. For example, Chrome,

Firefox, Safari, and Samsung Internet web browsers which
together account for about 90% of the market share use the
GSB blocklist [3]. GSB is deployed in about four billion
devices worldwide and shows millions of browser warnings
every day protecting users from web attacks. Such blocklists
are populated with the help of web security crawlers that
regularly scout web-pages to evaluate them. However, in
order to evade these crawlers, miscreants employ many
cloaking techniques [23, 38, 39, 49, 52].

Despite such great importance, security crawlers have
been left understudied for a long time. Only recently,
researchers have begun to focus on evaluating the robustness
of these crawlers against various cloaking attacks [32, 37, 52].
One common design methodology that has emerged in
all these works is the use of phishing experiments. This
usually involves setting up multiple websites with different
second-level domains (TLD+1s) as phishing sites get blocked
at a TLD+1 level [5,6,12]. These sites are then used as unique
tokens for hosting simulated phishing pages that are hidden
by distinct candidate cloaking mechanisms. For example,
some pages might deliver phishing content to only certain
geo-locations or mobile user agents [37]. User interaction
detectors [52] and CAPTCHAs [32] have also been utilized
as cloaking mechanisms to hide mockup phishing content.
The key idea in this approach is to create disparate sets of
phishing token sites with different cloaking mechanisms
and then selectively self-report them to different crawlers.
Depending on which sets of websites get listed in the browser
blocklists, one can measure which crawlers can defend how
well against various cloaking attacks.

In this research, we explored an alternate approach that
completely avoids simulated phishing sites and blocklisting
measurements for evaluating security crawlers. Instead, we
create multiple token websites with benign content and
self-report them selectively to different crawlers to trigger
their visits. We then directly profile the crawlers by collecting
forensic information such as their IP addresses, HTTP
headers and browser fingerprints at a large scale. Lastly,
we conduct a quantitative analysis of this information to
identify and compare multiple previously unstudied cloaking

USENIX Association 30th USENIX Security Symposium 3775

weaknesses across different crawlers. We also conduct small
scale phishing experiments using phishing sites that are
powered by this analysis to demonstrate the gravity of the
weaknesses we found in the crawlers.

Since we avoid using phishing content in the token sites,
these sites and their associated TLD+1 domains do not get
blocked. As a result, we can use a single TLD+1 domain to
host a large number of token profiling sites as subdomains.
This allows our approach to be much more scalable than using
phishing experiments. For example, in our main profiling
experiment, we created and sent 18,532 token sites to 23 secu-
rity crawlers at the cost of registering a single domain name.
Each token site collects information about multiple cloaking
weaknesses simultaneously with this design further boosting
the scalability. Moreover, by using benign sites researchers
can avoid the difficult process of seeking prior immunity
from hosting providers as there is no risk of whole account
takedown unlike in the case of phishing experiments where
this is essential [37]. We discuss the question of whether this
approach of using a single TLD+1 introduces bias in §6.

We implemented our approach by building PhishPrint, a
scalable security crawler evaluation framework that is made
up of two modules. The main module conducts large scale pro-
filing experiments to help find crawler weaknesses while the
other one aids in set up of small scale phishing experiments
to help demonstrate the seriousness of these weaknesses.
Using PhishPrint, we profiled 23 security crawlers over a
70-day period using 18,532 token sites resulting in 348,516
HTTP sessions. These 23 crawlers included those employed
by highly ubiquitous services such as Google Safe Browsing
and Microsoft Outlook e-mail scanners as well.

When building PhishPrint, we made use of code from a
popular browser fingerprinting project [2] to help in gathering
the crawlers’ fingerprints along with their HTTP headers.
When we analyzed the gathered data, we found several
interesting crawler weaknesses. For example, we found that
many crawlers carry “Crawler Artifacts” such as anomalous
HTTP headers implying the presence of browser automation.
We also saw that the Autonomous Systems (AS) used by a lot
of crawlers are very uncommon (for human users) and limited
in variety. Therefore, they can be embedded into an “AS
Blocklist” to help in cloaking. Similarly, we also found that
the IP addresses were limited in some cases leading to an

“IP Blocklist”. We also found that several crawlers do not
use “Real Browsers" as they fail to support the execution of
fingerprinting code that is widely supported in the browsers
of most users. Finally, we found that the entire crawler
ecosystem is severely lacking in the diversity of their ad-
vanced browser fingerprints (defined here as a combination of
JS-based Font, Canvas and WebGL fingerprints) thus pointing
to the efficacy of a “Fingerprint Blocklist” to aid in cloaking.

To measure and confirm the damage that these anomalies
and blocklists can do, we used them to power 20 evasive
phishing sites deployed in PhishPrint. Despite aggressive

self-reporting of all phishing sites to the crawlers, our
results showed that 90% of the sites can escape blocklisting
indefinitely in stark contrast to the lifetime of a baseline
phishing site which was only about three hours.

We will describe PhishPrint in more detail in §2. All
experiments and their results are presented in §3 and §4,
while mitigations are covered in §5. We discuss vulnerability
disclosure, limitations, ethical considerations and future work
plans in §6 and related work in §7.

We make the following contributions with this paper:
1. Framework: We built a novel, scalable, low-cost frame-

work named PhishPrint to enable evaluation of web
security crawlers by completely avoiding the use of
blocklisting measurements and phishing sites.

2. Measurements: We deployed PhishPrint in a 70-day
longitudinal study to evaluate 23 crawlers individually
and more than 80 crawlers cumulatively. Analysis
of the data led us to new cloaking weaknesses and
attack vectors against the crawler ecosystem (Crawler
Artifacts and Real Browser Anomalies, AS and Fingerprint
Blocklists) which we confirmed through user studies and
phishing experiments. We also devised a simple metric
named Cloaking Vector Defense Score to compare these
weaknesses in order to help in the prioritization of fixes.

3. Impact: In order to address these weaknesses, we
suggested concrete mitigation measures in areas of
crawler and reporting infrastructures. We also performed a
thorough vulnerability disclosure with all crawler entities
eliciting their positive feedback and remedial actions.
We also state that we are willing to share our PhishPrint

codebase selectively with all security researchers and
concerned industry members to enable further evaluation
studies on the security crawler ecosystem.

2 System Description

Data Analysis

Token URL
Generator

Web Scan
Requestor

Web Security Crawlers

<tank1.phishp.com><gsb1.phishp.com>

*.phishp.com

Database
<outlook1.phishp.com, MS SmartScreen>

<gsb1.phishp.com, Google Safe Browsing>
<tank1.phishp.com, Phishtank>

<outlook1.phishp.com, FP List>
<gsb1.phishp.com, FP List>
<tank1.phishp.com, FP List>

*.phishp.com

Phishing Sites

*.phishp.com

1

2
Profiling Websites

 FingerprintsHeaders

URLs
BFPs

*.phishp.com

7

3

4

5

6

<outlook1.phishp.com>

8

Profiling Module Attack Module

Figure 1: PhishPrint: System Overview

Our PhishPrint system is made up of two modules (see
Fig. 1). The main module is the Profiling Module which uses
a large number of benign websites 4 to collect and analyze
sensitive profiling information from security crawlers and
find any cloaking defense weaknesses. These weaknesses
can then be harnessed to devise cloaking attack vectors. The

3776 30th USENIX Security Symposium USENIX Association

efficacy of these attack vectors can then be verified with the
Attack Module which uses an array of simulated phishing
websites 8 for this.

The working of the Profiling Module begins with the Token
URL Generator 1 whose job is to periodically generate
unique, never-before-seen URLs that will be given as tokens
to various crawlers. The URLs are also stored in a database
5 . Although each URL is unique, they all point to a single

Profiling Website 4 server that we maintain. As previously
discussed, we use unique subdomains of a single TLD+1
domain for generating these URLs. The mapping between the
token URLs and the web server instance was set up with the
help of wildcard DNS records and .htaccess rewrite rules.

The Web Scan Requestor 2 receives URLs periodically
from the Token URL Generator and reports them to different
crawlers 3 as potential “phishing URLs”. We went through
an elaborate process to find a comprehensive list of security
crawlers that can be supported by the requestor module.
Firstly, we included crawlers such as Google Safe Browsing
(GSB) and Microsoft SmartScreen which power the URL
blocklists of most web browsers covering millions of users.
We also added support for crawlers such as PhishTank,
APWG, and ESET which along with GSB and SmartScreen
have all been studied in previous research [37]. Further,
we went through the list of URL scanning services hosted
by VirusTotal [11] and included 17 additional crawlers
that have a publicly accessible reporting interface. To our
knowledge, none of these have been studied previously.
We also tested various communication applications such as
e-mail clients and social media apps with token URLs to see
if we could find evidence of any crawlers being employed by
these vendors. In this process, we discovered that Microsoft
employs a crawler to pre-scan all URLs received by its Office
365 customers using the Outlook e-mail service [1]. Given
that Office 365 is a hugely popular application with a current
subscriber base of more than 250 million people [10], we also
included it as a candidate to be evaluated bringing the total
list of crawlers to 231 (listed in 1st column of Table 1). The
Web Scan Requestor module is built to use different methods
such as Selenium-based browser automation code, emails
as well as direct web API calls in order to send periodic
phishing URL reports to the 23 crawlers.

After receiving the reports, the crawlers will visit the token
URLs. As already noted, all these URLs point to a single
web server hosting a Profiling Website 4 . We designed
this website to be able to extract browser fingerprints of any
visitor without requiring any user interaction. For this, we
adapted (with permission) the fingerprinting code developed
and used for the AmIUnique project [2, 29]. Apart from
serving as a reliable cross-browser compatible codebase,

1We also discovered that some media applications such as Slack and
Facebook Messenger scan our token URLs. However, we do not consider
them as security crawlers as they were clearly identifying themselves with
the User-Agent headers akin to search engine bots.

their project also allowed us to be able to evaluate the
specificity of some attack vectors we derive on a large scale
as will be shown in later sections. The fingerprints extracted
are: Canvas, JS-based Font and WebGL fingerprints (code
in Appendix D) and Navigator object properties. The web
server will store all the extracted fingerprints, the client’s IP
address and the HTTP request headers in the database.

After eliciting a suitable number of crawls over an extended
period of time, we can ascribe the collected fingerprint
data and HTTP metadata to different crawlers by using the
token URLs as a common factor 5 . We can then conduct
a thorough analysis of the cloaking defenses of specific
crawlers 6 . This allows us to derive different cloaking attack
vectors 7 . The cloaking vectors can then be evaluated using
the Attack Module. The module contains an array of evasive
simulated phishing websites that are bootstrapped to use the
derived cloaking vectors. It is important to note that some
of these cloaking vectors rely on blocklists that need to stay
up-to-date in order to remain continually effective. As a
result, in order to use these kinds of cloaking vectors, the
Profiling Module needs to continue to run throughout the run
time of the Attack Module. More details about the setup of
the phishing websites are discussed in §4.

We used PHP, Python and JavaScript for building all the
above described modules with about 20K lines of code. In
the interest of making a real impact in improving the security
architecture of crawlers, we plan to release our code to vetted
academic researchers as well as concerned members of the
industry upon request. However, we are abstaining from
making a public release of our code in order to deter risks
of possible abuse of the system by malicious actors.

3 Profiling Security Crawlers
We setup PhishPrint to run on our University network. We

registered a domain under the .com TLD for our Profiling
Websites. As described in §2, our system was setup to collect
and analyze profiling data from 23 different crawlers (Ta-
ble 1). We ran the system for a period of 10 weeks beginning
in the 2nd week of January 2020. We collected the data for a
total period of 77 days (until the last week of March) in order
to allow sufficient time for any delayed crawls that might be
initiated from some crawlers. During this period, PhishPrint
reported 12 token URLs as fake phishing reports daily to each
of the 23 crawlers (Ethical considerations are discussed in §6).
These reports were sent in two hour intervals of time through-
out to all the crawlers. As a result, we reported a total of 840
token URLs to most crawlers2 over the deployment period.

2Forcepoint, FortiGuard and GSB are the only exceptions. Forcepoint has
a reporting limit of 5 URLs per day restricting us to 350 submitted URLs. Due
to intermittent technical issues on both server and client sides, we could only
report 777 and 612 URLs to FortiGuard and GSB respectively.

USENIX Association 30th USENIX Security Symposium 3777

3.1 Analysis and Cloaking Vectors
The above mentioned setup allowed us to collect sensitive

profiling data from multiple crawlers over the 10-week period.
We analyzed the data to find crawler weaknesses and derive
relevant cloaking vectors. The profiling data we collected for
this project can be divided into these 3 categories: browser
anomalies, network data and advanced browser fingerprints.

In this section, we will describe how the profiling data
from the 3 areas was analyzed and what cloaking vectors
were derived as a result. Before this, it is helpful to first
establish some terminology relating to cloaking attack
vectors. Regardless of the type of profiling data being used,
cloaking vectors used by attackers trying to evade crawlers
can fall into one of two classes: Anomalies and Blocklists.
We will describe these two classes below:

Anomaly cloaking vectors capitalize on the characteristic
anomalous behaviors exhibited by crawlers when visiting can-
didate websites. These vectors can be created after finding any
anomalies in the requests being made by crawlers that strongly
indicate the fact that they are not from a potential human vic-
tim. For example, consider a HTTP request made by a crawler
with a headless browser’s User-Agent. Attackers can block
all such requests to avoid detection without blocking any po-
tential victims as no victim will use a headless browser. Thus,
by definition, all these vectors work with high specificity.

Blocklist cloaking vectors rely on some specific finger-
prints known to be associated with crawlers (such as from
PhishPrint’s profiling data) in order to create a blocklist for
the operation of cloaking websites. For example, if there are
a set of specific IP addresses that Google uses for its GSB
crawlers, they can then be made part of a blocklist attack
vector to evade GSB.

Blocklist vectors differ from anomaly vectors in two key
aspects. Firstly, many blocklists need continuous updating in
order to be effective. For example, if a crawler keeps changing
its IP addresses, then the corresponding blocklists need to be
updated by the attackers. This is not the case with anomaly
vectors which rely on some specific crawler idiosyncrasies
that are overlooked by the crawlers and hence remain fixed.
Secondly, blocklists might block some potential victims. So,
their specificity needs to be taken into account by attackers
before using them. For example, if an attacker simply blocks
all /24 subnets of IP addresses seen from a crawler and if that
crawler was using a residential proxy to route its requests,
then such a blocklist could potentially cause a lot of false
positives for the attacker. On the other hand, anomaly vectors
are all very specific as already discussed.

We will now discuss the three areas of profiling data we
analyzed in our study along with the associated cloaking
vectors that we derived and their novelty aspects.
3.1.1 Browser Anomalies

The first area of profiling data we consider focuses on how
closely the client code used by a crawler resembles that of
a real browser. We observed several anomalies in the web

browsers used (or pretending to be used) by the crawlers. We
categorize these into 3 different anomaly vectors and discuss
them here.

JS Execution Anomaly Vector. The first anomaly we
discovered was the inability of a few crawlers to execute
some simple JavaScript code. For this, we checked whether
or not a crawler is capable of executing a test function that
is passed to Window.setInterval() method. This is very
similar to the onload event-based cloaking vector used
in [37] (see Appendix C for details). However, it is to be
noted that many crawlers are good at executing such simple
JS code and hence this serves as a baseline against which can
measure the efficacy of more sophisticated cloaking vectors.

Real Browser Anomaly Vector. We designed our profiling
website to ship out fingerprints (specifically: Font, Canvas
and WebGL fingerprints; code in Appendix D) to the database
without requiring any user interaction. We verified that this
website is cross-platform compatible by manually testing it
with most used web browsers such as Chrome 79, Firefox 71,
Safari 11, Edge 44 and IE 11 on Windows (Vista, 7 and 10),
macOS, Linux (Ubuntu), iOS and Android platforms. During
this process, as and when required, polyfill Javascript libraries
were used to maintain compatibility with older web browsers
(such as IE) that do not fully support some APIs such as
Canvas. Thus, our thorough testing ensured that the most
commonly used web browsers will all ship us fingerprints
as soon as they visit our website. However, we observed that
many crawlers were unable to ship out their fingerprints as the
fingerprinting code fails to run in their “browsers” although
many of them do successfully execute the simpler JS code
mentioned previously. This is highly likely due to the failure
of crawler vendors in setting up robust JS-execution environ-
ments to support all advanced web APIs such as Canvas [20]
and WebGL [21]. We refer to this as a Real Browser anomaly.

To our knowledge, no other previous research has
attempted to do such analysis against security crawlers3.

Crawler Artifacts Anomaly Vector. We discovered a few
anomalies when manually analyzing the HTTP requests head-
ers and navigator objects we collected from the crawlers.
For some crawlers, we saw that the navigator.useragent
value does not match the User-Agent header. Similarly,
navigator.platform does not always match the platform
indicated in the User-Agent header. For example, it was
common to see cases where the User-Agent header indicates
a Windows platform, but the navigator.platform indicates
a Linux platform. Similarly, we saw a number of cases where
the User-Agent bears indicators of automation such as curl,
phantomjs, headless etc. Further, we also found discrep-
ancies in the values of navigator.webdriver. This is a
Boolean field that indicates whether a web browser is being
driven by browser automation software such as Selenium.
While for most web browsers the default value of this field in

3The “Real Browser" vector described in [37] is synonymous with the JS
Execution Anomaly we discussed.

3778 30th USENIX Security Symposium USENIX Association

a non-automated browser is set to false, in Chrome it is set to
undefined. In this regard, we noticed that in some crawlers,
navigator.webdriver was being set to false even though
the User-Agent indicated a Chrome browser. This is a clear
anomaly and shows that the property had been tampered with.

We note that previous works have used similar techniques
in a more elaborate fashion to defeat privacy-protecting
browsers and extensions [46] and ad network block-
ages [45]. [26] also found several such artifacts by studying
in-the-wild bot detection scripts. However, in our study, we
measure these anomalies as weaknesses of security crawlers
and apply them for cloaking.
3.1.2 Network Data

For this part of the analysis, we focused on the IP addresses
used by the crawlers for initiating web requests to PhishPrint.
We collected these addresses during our deployment period
and crafted IP Blocklist Vectors. Thus, we were able to mine
a blocklist cloaking vector from PhishPrint’s data. Note that
real-world attackers tend to use massive blocklists made of
IP addresses for building phishing sites [38]. Hence, it is
very important to measure how well crawlers are doing (both
specifically as well as cumulatively) in defending against this
vector. The performance of crawlers against in-the-wild IP
blocklists has been studied before [37]. However, the highly
scalable nature of PhishPrint now allows us to directly collect
a large amount of network infrastructure data and then analyze
and compare this across an extensive set of security crawlers.
In addition, we also mapped the collected IP addresses to
their associated countries in order to measure the geolocation
variety of the network infrastructure setup by the crawlers.

AS Blocklist Vector. Upon analyzing the Autonomous
System (AS) names of the collected IP addresses, we also
discovered that many crawlers are housing their crawlers
in IP address spaces that can be mapped to web or cloud
hosting companies (such as Amazon, DigitalOcean) or the
organizations related to the crawlers themselves (such as
Google, Microsoft, BitDefender, Cisco). We were able to
make a list of 66 such AS names. We refer to this as an AS
Blocklist. As it is unlikely for a potential victim to be visiting
an attacker’s website from such IP addresses, an attacker can
easily use as AS Blocklist to evade crawlers.

AS Blocklist is a hybrid between anomaly and blocklist
cloaking vectors. Similar to anomaly vectors, it is based on an
anomaly and is relatively static as it is unlikely for offending
crawlers to frequently change their network infrastructure
between different cloud networks. On the other hand, similar
to other blocklist vectors, it takes extensive data collection
efforts to construct lists like this as there a myriad number
of web hosting entities. Further, if the blocklist is poorly
constructed and includes AS names of victim IP spaces,
then there could be specificity issues as with other blocklist
vectors. We empirically demonstrate that this is not the case
with AS Blocklist with a large-scale user study later (§4.2).

Prior works have utilized AS level features to escape

malware sandboxes [51]. In this study, we applied similar
techniques to study security crawler evasion.

3.1.3 Advanced Browser Fingerprints
Recent privacy-oriented studies such as [17, 22] have

shown Canvas, WebGL and Font list (obtained via JS)
fingerprinting to be among the most discriminatory identifiers.
As a further testament to this, these browser fingerprints have
also been used to develop authentication schemes [13, 27].
At the same time, privacy researchers have also shown
that such fingerprints are not easy to defend against and
require elaborate measures [24, 31, 41, 50]. Given this, there
is a high potential for developing an effective cloaking
vector if crawlers do not take adequate measures to defend
against these fingerprinting techniques. Hence, we wanted
to analyze these fingerprints after we collected them from
crawlers. Snippets of the fingerprinting code we use are listed
in Appendix D. For both Canvas and WebGL fingerprints
(both first introduced in [34] and later used in [22]), the code
draws a hidden image on the webpage and a cryptographic
hash of that image is produced to be used as a fingerprint. For
font fingerprinting, a simple trick first proposed in [36] and
later used in [22] is used to detect the list of 1043 fonts that
are installed in the client using JavaScript. A cryptographic
hash of the font list serves as the font fingerprint for the client.

Our analysis showed that the entire crawler ecosystem
exhibits very little dynamism across these three fingerprints.
To capitalize on this, we propose a blocklist cloaking vector.
For this, we follow the approaches of prior studies [22, 29]
and use a tuple of the three fingerprints: <Font, Canvas,
WebGL> (or <F,C,W>) in order to effectively combine their
individual fingerprinting capabilities. In the rest of this paper,
we refer to this compound fingerprint as “fingerprint” for
brevity. Our proposed <F,C,W> Fingerprint Blocklist Vec-
tor for this simply stores all <F,C,W>s seen from crawlers in
the past to aid future evasion. As this is a blocklist vector, we
will perform multiple measurements to verify its specificity.

3.2 Profiling Analysis Results
In this section, along with an overview of the profiling

data we collected during the 10-week study, we will present
measurements indicating the performance of the crawlers
against the six cloaking vectors we introduced previously. All
these results are presented in Table 1 where the 1st column
lists all the crawlers we studied.

VT Sharing. During analysis and investigation, we found
that 8 crawlers have shared their token URLs with VirusTo-
tal [11] (VT). This sharing has taken place at varying degrees.
Malwares and Quttera have shared more than 99.5% of their
URLs with VT, while Bitdefender and PhishTank have shared
about 10 and 30% of their URLs with VT. VT hosts more than
80 crawlers that begin scanning the uploaded URLs almost
immediately. As a result, all such VT-shared URLs need to be
considered separately. For this, we created a “virtual crawler"
named “VT Ecosystem" and consider all VT-shared URLs

USENIX Association 30th USENIX Security Symposium 3779

exclusively here. We treat this virtual crawler as equivalent to
other crawlers in the rest of this paper. Since Malwares and
Quttera shared most of their URLs with VT, no meaningful
specific analysis can be made for these crawlers. Hence, we
avoid their individual rows in the table and just show them
as part of the VT ecosystem. It is to be noted that due to the
large number (80) of crawlers hosted on VT (including 18
of our 23 crawlers), the VT ecosystem can be considered as
a cumulative representative of the entire crawler ecosystem.

The 2nd column shows the number of URLs submitted
(discussed in §3.1), the number of URLs scanned by the
crawlers and the number of URLs shared with VT by each
crawler. Overall, in the 10 week period, we submitted about
18,532 token URLs (with distinct domain names) to all the 23
crawlers. In terms of crawl back rates, most of the crawlers
did well with many of them visiting more than 90% of the
submitted URLs. A notable exception is Norton which visited
only 53 of the submitted URLs. The total number of URLs
submitted to VT by other crawlers was 803. The 3rd column
describes the number of URLs remaining to be analyzed after
we excluded the VT URLs. It also lists the number of sessions
established for the analyzed URLs indicating the total number
of visits made. While crawlers from PhishTank and Scumware
establish 50 to 100 sessions for each analyzed URL, some oth-
ers such as GSB, SmartScreen and Forcepoint visit each URL
only once or twice. Overall, as many as 348,516 sessions were
established for scanning 18,532 distinct URLs we submitted.
The 4th column shows the median of time deltas between
the first crawl time and the URL submission time for URLs
submitted to each crawler. Some crawlers such as Fortinet
and SmartScreen have a slow average response time whereas
many others including GSB, Outlook take only a few seconds.

CVD Scores. In order to compare the performance of
all the crawlers across the six cloaking vectors, we need an
intuitive performance metric. For this, we devised a simple
metric called Cloaking Vector Defense Score (CVD score).
The CVD score can be computed for any given crawler (say,
W) and a cloaking vector (say, V). Assume that we reported x
URLs to W and it scanned y of them (ignoring the VT-shared
URLs) during our entire study. We conduct an a posteriori
analysis of all the y URLs to determine how many of them
were visited at least once by a crawler that does not exhibit
the weakness associated with V . If such a number is z, we
report the CVD score of the pair (W,V) as z

y ×100.
Doing this a posteriori analysis for an anomaly vector is

straightforward as we simply need to determine if at least
one of the many requests a URL might receive does not
exhibit the anomaly being considered. However, in the case
of blocklist vectors, we will need the respective blocklists
in order to make this determination for a given request. We
build this blocklist dynamically using all the historic data
collected from the crawler prior to the current request. For
example, in order to determine if a request r at time t can be
blocked by a blocklist vector V , we use all prior requests to

the crawler before t to build a blocklist and see if the current
request can be blocked by such as blocklist. If it does, we
determine this to be a weak request and do not consider it.

From the above, we can see that the CVD score, by
definition, reflects the chance (as a %) of a given crawler
to successfully defend against a given cloaking vector.
Columns 5 to 10 show the CVD scores of the crawlers
over the six vectors we described previously. We use red,
yellow and green colors in the table to show the bad (<33),
moderate(33−66) and good (>66) scores respectively.

Anomalies. Column 5 shows that the CVD scores for JS
Execution Anomaly vector are good all across the spectrum
of crawlers. This demonstrates a positive evolution from the
situation in [37] which showed that only 1 of the 5 studied
crawlers had good score. More such evolutionary changes
in crawlers have been described in Appendix C. On the other
hand, many crawlers seem to be failing in handling the Real
Browser Anomaly vector that we developed (Column 6). The
only notable exceptions to this are APWG and the VT ecosys-
tem. We noticed that GSB, for example, completely fails to
support the WebGL API in many of its crawlers. Some other
notable failures are Outlook, Avira and Forcepoint that did not
visit even a single submitted URL with a Real Browser. The
overall combined CVD score of all crawlers in this respect is
thus only 35.2 which shows a lot of scope for improvement.
A positive result is that most vendors seem to have some
crawlers that do not carry Crawler Artifacts Anomalies
(Column 7). However, all crawlers from AlienVault and Avira
have an anomalous navigator.webdriver property which
was causing all their visits to be easily evadable.

IP-Blocklist. The CVD scores for IP-Blocklist vector
along with the number of distinct IP addresses of source
requests and the countries they are associated (# CCs) with is
in Column 8. We note that as many as 11 crawlers make their
visits from less than 20 distinct IP addresses even though
they visit hundreds of domains forming thousands of sessions
across time. Crawlers from AlienVault and OpenPhish visit
only from 1 or 2 IP addresses. A control experiment reported
that this situation persists even when doing repeated reports
from diverse sources (§3.2.2). On the other hand, URLs sub-
mitted to some crawlers including GSB, Outlook, PhishTank
and APWG are scanned by a large number of distinct IP
addresses. For PhishTank, this number is as high as 4096 IP
addresses (spread over 51 countries) for the 579 URLs we
analyzed. Figure 2 charts the growth of the distinct number of
IP addresses we have seen across the days of our experiment.
The graphs shows a near-linear growth for APWG and GSB
indicating the greatest diversity in IP addresses. SmartScreen
shows an interesting IP infrastructure growth. The number
of IP addresses was 1 for the first 50 days of the experiment
but has risen to 50 in the last 20 days. This indicates an
infrastructure change during the last 20 days which was
referred to during our vulnerability disclosure process as well.
One more interesting point to note is the number of countries

3780 30th USENIX Security Symposium USENIX Association

1

Crawlers

2

URLs
Submitted
/ Scanned

/ VT Shared

3

URLs
Analyzed

/ # Sessions

4

Reply
Time
h:m:s

Browser Anomalies Network Data Advanced BFPs

5 6 7 8 9 10

JSE-A
Score

RB-A
Score

CA-A
Score

IPs
/ # CCs

IP-B
Score

AS-B
Score

<F,C,W>s
/ #F - #C - #W

(FCW-B Score)

AlienVault 840 / 837 / 0 837 / 2354 0:00:16 99.5 18.9 0 1 / 1 0.1 0 2 / 1-2-2 (0.2)
APWG 840 / 839 / 0 839 / 4658 0:00:10 100 99.5 99.8 2726 / 8 99.1 62.9 6 / 7-7-3 (0.6)
Avira 840 / 837 / 0 837 / 2082 0:50:27 92.1 0 0 70 / 3 8.4 43.0 0 / 0-0-0 (0)
Badware 840 / 837 / 0 837 / 837 0:00:08 99.8 0 100 1 / 1 0.1 100 0 / 0-0-0 (0)
Bitdefender 840 / 542 / 67 475 / 3918 4:16:10 97.9 40.2 97.3 62 / 10 9.1 79.6 46 / 46-38-12 (9.3)
Dr.Web 840 / 836 / 0 836 / 846 0:00:22 79.8 0 0 15 / 3 1.8 71.8 0 / 0-0-0 (0)
ESET 840 / 764 / 0 764 / 987 3:35:02 99.7 17.9 100 12 / 2 1.4 99.9 6 / 3-6-3 (0.8)
Forcepoint 350 / 295 / 0 295 / 295 0:00:24 85.1 0 45.8 1 / 1 0.3 100 0 / 0-0-0 (0)
FortiGuard 777 / 764 / 8 756 / 4590 0:00:46 97.1 9.4 100 19 / 3 2.0 12.7 27 / 25-25-8 (3.4)
Fortinet 840 / 772 / 5 767 / 4495 11:45:36 98.8 5.9 100 2 / 2 0.3 7.4 12 / 12-11-6 (1.6)
GSB 612 / 591 / 0 591 / 775 0:00:04 99.2 23.9 100 619 / 83 94.4 90.9 2 / 2-2-2 (0.3)
SmartScreen 840 / 822 / 0 822 / 1133 2:58:11 99.8 44.0 77.6 50 / 2 2.6 100 17 / 13-8-5 (1.7)
Norton 840 / 53 / 0 53 / 69 0:31:42 86.8 13.2 88.7 19 / 3 34.0 98.1 1 / 1-1-1 (1.9)
Notmining 840 / 838 / 0 838 / 1675 0:00:10 84.3 0 0 1 / 1 0.1 0 0 / 0-0-0 (0)
OpenPhish 840 / 835 / 0 835 / 4928 1:00:02 99.8 59.6 100 2 / 2 0.1 0 1 / 1-1-1 (0.1)
Outlook 840 / 672 / 0 672 / 676 0:00:18 98.7 0 100 535 / 1 79.5 0 0 / 1-1-0 (0)
PhishTank 840 / 838 / 259 579 / 45976 0:00:10 100 82.2 100 4096 / 50 93.4 100 51 / 55-69-19 (7.4)
Scumware 840 / 633 / 2 631 / 29537 0:25:47 100 80.0 100 1643 / 59 82.9 100 27 / 37-32-5 (3.0)
Sophos 840 / 793 / 0 793 / 2170 0:01:47 97.6 3.5 91.2 26 / 3 2.0 100 3 / 2-3-1 (0.4)
Sucuri 840 / 830 / 0 830 / 2488 0:00:09 87.2 0 100 837 / 70 100 96.6 0 / 0-0-0 (0)
ZeroCERT 840 / 840 / 462 378 / 1152 0:05:11 100 0.5 100 3 / 1 0.8 100 1 / 2-2-1 (0.3)
VT Ecosystem 2483 / 2465 / - 2465 / 232875 0:04:18 99.9 98.8 100 7795 /76 82.1 99.8 101 / 111-97-21 (3.1)
All 18532 / 16730 / 803 16730 / 348516 0:01:15 96.3 35.2 77.4 15394 /113 33.4 65.6 204 / 182-162-36 (1.1)
Best Score - - - 100 99.5 100 - 99.1 100 9.3

Table 1: Details of 70-day profiling study including CVD scores for the six cloaking vectors
The scores are color-coded: red for <33, yellow for 33−66 and green for >66.

JSE-A: JS Execution Anomaly; RB-A: Real Browser Anomaly; CA-A: Crawler Artifacts Anomaly;
#IPs: Crawler IP Addresses; #CCs: Country Codes; IP-B: IP Blocklist; AS-B: AS Blocklist;

#<F,C,W>s: Font/Canvas/WebGL fingerprint tuples; #F: Font fingerprints; #C: Canvas fingerprints;
#W: WebGL fingerprints; FCW-B: <F,C,W> Fingerprint Blocklist;

associated with the IP addresses. APWG is an interesting
example, in that even though they employ 2726 IP addresses,
they are all associated with only 8 countries which makes
a country-based cloaking vector feasible for targeting victims
outside those 8 countries. The CVD scores demonstrate a
very polarized situation with roughly half the crawlers having
very good scores >80 and half having very bad scores <10.

AS-Blocklist. Many crawlers including Outlook and
AlienVault showed bad AS-Blocklist CVD scores. Outlook
in particular, was using crawlers that were all housed in a
Microsoft IP space and is hence evadable despite using a large
number of IPs for visiting the URLs. The same is the case with
FortiGuard, Avira and OpenPhish who were using common
cloud and web hosting companies for housing their crawler
bots. On the other hand, there were several crawlers such as
PhishTank and GSB that performed well in this respect.
<F,C,W> Fingerprint Blocklist. Column 10 shows

the the number of distinct <F,C,W> fingerprints and the
individual Font, Canvas and WebGL fingerprints collected
from the crawlers. It also shows the <F,C,W> Fingerprint
Blocklist CVD scores considering the fingerprint tuple.
Despite scanning 16,730 distinct domains and initiating
348,516 HTTP sessions over 70 days, we see that the crawlers

collectively only had 204 distinct <F,C,W> fingerprints
including 162 Canvas and 182 Font fingerprints. These
numbers can be put into perspective by seeing that a prior
study [22] has collected as many as 78K distinct Canvas FPs
and 17K distinct Font FPs over a 6-month period with the
help of a few regional websites4. Further, we can also notice
these crawlers used as many as 15,394 distinct IP addresses
in total. This shows that while many vendors are actively
trying to change their network infrastructure fingerprints,
little is being done to vary the advanced browser fingerprints.

Inspecting the individual rows, we can see that even ven-
dors that invested a lot into their network infrastructure such
as GSB and APWG only have a handful of distinct <F,C,W>s
(2 and 6). Note that 7 crawlers have a 0 score in combating
the Real Browser Anomaly cloaking vector. This means their
browsers are not even capable of running the fingerprinting
code and hence we did not collect any <F,C,W>s from them.
Some crawlers such as PhishTank, Bitdefender and the VT
ecosystem fare slightly better with 51, 46 and 101 distinct

4This study did not include AmIUnique’s current WebGL FP implemen-
tation. Further, our experiments showed they are the least specific of the 3
fingerprints §3.2.1. Hence, we avoid discussing WebGL fingerprints here.
However, we do use these as part of the <F,C,W> tuple as already described.

USENIX Association 30th USENIX Security Symposium 3781

10 20 30 40 50 60 70
Days

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 F
P

s

(a) IP Address

 #IPs
APWG 2726
Bitdefender 62
GSB 619
SmartScreen 50
PhishTank 4096
VT Bucket 7795

10 20 30 40 50 60 70
Days

0.0

0.2

0.4

0.6

0.8

1.0

(b) Font

 #FPs
APWG 7
Bitdefender 46
GSB 2
SmartScreen 13
PhishTank 55
VT Bucket 111

10 20 30 40 50 60 70
Days

0.2

0.4

0.6

0.8

1.0

(c) Canvas

 #FPs
APWG 7
Bitdefender 38
GSB 2
SmartScreen 8
PhishTank 69
VT Bucket 97

Figure 2: Growth of distinct IP addresses and fingerprints in PhishPrint database for different crawlers

values of <F,C,W>s. However, these still not seem to be suffi-
cient as demonstrated by their fingerprint CVD scores. Bitde-
fender’s score although the highest among all crawlers is still
only 9.3. This means that more than 90% of the token URLs
would have evaded detection from Bitdefender using the
<F,C,W>s as a simple blocklist. It is also interesting to see the
growth rate graphs of distinct Font, Canvas fingerprints col-
lected by PhishPrint. While the IP addresses had an almost lin-
ear growth for many crawlers (such as GSB and APWG), the
Font and Canvas fingerprint growth rates present a completely
opposite picture. As GSB has only 2 such fingerprints that
were used from day 1, the graph is just a flat line. For APWG,
PhishTank and Bitdefender, the growth rate is very low in the
last 30 days. This indicates the high likelihood of a successful
blocklist cloaking vector which we will demonstrate later §4.
SmartScreen has only 17 <F,C,W>s for its 822 URLs. The
growth rate for these is in a step-wise fashion with long flat
lines indicating again the utility of a blocklist cloaking vector.

Further, this best score of 9.3 remains in very stark contrast
with best scores for the other five cloaking vectors as shown
in the final row of the table. This shows that while the other
cloaking vectors are being well handled by at least some
crawlers, advanced fingerprints such as <F,C,W>s present
a grave cloaking weakness that seems to be affecting all the
entities in the crawler ecosystem.
3.2.1 Specificity of Advanced Fingerprints

As we are proposing to use <F,C,W>s as a blocklist for
evasion, their specificity needs to be established as already
discussed. We accomplished this by collecting a set of
<F,C,W>s from crawlers and measuring how common they
are among internet users. For this, we re-deployed PhishPrint
on 3 days spread evenly over September 2020. We collected
all <F,C,W>s from 5 crawlers (listed in Fig. 3)5 by sending
12 token URLs each day to each of the 5 crawlers. It is to
be noted that 35 of these 180 URLs (including 34 PhishTank
URLs) were shared with VirusTotal immediately, thereby
soliciting crawls from many of the 80 VT crawlers similar to
the longitudinal study. At the end of each day, we waited for a

5We chose these 5 crawlers based on fingerprint diversity and popularity.
We limited to only these as our prior agreement with AmIUnique project
developers (our data source) limited us to only 100 fingerprint look-ups.
We will show in §4.2 that these crawlers are mainly responsible for most
fingerprint collisions with users.

BFP # Unique Median 75% 95% Max Sum

Font 53 20 0.0009% 0.042% 2.16% 12.46% 25.46%
Canvas 46 11 0.0034% 0.07% 1.57% 2.17% 10.47%
WebGL 16 1 0.081% 2.09% 5.53% 11.47% 25.63%

Table 2: Specificity of Crawler Fingerprints

0 10
−3

10
−2

10
−1

10
0

10
1

Font FP Prevalence (in %)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 B

FP
s

 #FPs %Sum
APWG 2 0.05
Bitdefender 17 7.73
GSB 2 0.25
SmartScreen 4 0.98
PhishTank 43 19.51

0 10
−3

10
−2

10
−1

10
0

10
1

Canvas FP Prevalence (in %)

 #FPs %Sum
APWG 2 0.02
Bitdefender 13 4.99
GSB 3 0.07
SmartScreen 2 1.61
PhishTank 40 10.25

Figure 3: CDF plots showing the prevalence (in %) of crawler
fingerprints among 467K web users. Solid markers indicate

fingerprints that were also found in the 10-week study7

24 hour period and then sent the collected fingerprints to AmI-
Unique project’s API [2]. This allowed us to directly measure
the percentage of AmIUnique visitors who have the same
Font, Canvas or WebGL fingerprints. Each time we made a
query, the API would look up the data of visitors in the past 90
days6. As our 3 querying days are spread across a one-month
period, the datasets of visitors against which our fingerprints
were compared on each day is different. Among the 3
datasets, the smallest dataset is made up of 467,696 visitors.

Table 2 summarizes the results of all our queries. In total,
we collected and queried 53 Font, 46 Canvas and 16 WebGL
fingerprints. Interestingly, we noticed that many crawlers
continued to carry the same BFPs as the ones we saw in our
longitudinal study despite the 6-month difference in time.
For example, all fingerprints collected from APWG and

6Canvas and Font fingerprints are relatively stable for a user with a median
lifetime of more than 9 months [47].

7For some crawlers such as PhishTank and Bitdefender the markers on
the y-axis refer to multiple fingerprints. In these cases, if at least one of those
fingerprints was found in the previous study, we marked that point solid.

3782 30th USENIX Security Symposium USENIX Association

Config # Sessions #IPs # <F,C,W>

SR 954 291 10
DRR 799 188 10

Similarity - 0.046 0.54

Table 3: Results of Diverse Repeated Reporting Experiment

SmartScreen were already seen in the previous study. In total,
71.3% of fingerprints were already collected previously. The
table shows the distribution of prevalence (in %) of the 3
fingerprints and the graphs in Fig. 3 break this data down by
each crawler. Similar to results from prior privacy-oriented
studies [29], this data shows that most of the fingerprints
are very rare with only a handful of them being prevalent
in more than 1% of the visitors. For example, as many as
20 Font fingerprints were unique and not seen among any
of the visitors. The table also shows the sum of all these
prevalence percentages which could be used as a direct
measure of specificity if these fingerprints were individually
used as cloaking vectors. For example, the lowest of these
is 10.47% for Canvas thus indicating that attackers will only
lose about 10.47% of potential victims if they were to use a
blocklist made solely of Canvas-based crawler fingerprints as
their cloaking vector. However, if they used a more specific
cloaking vector such as the triplet <F,C,W>, we could expect
this lost victim percentage be even lesser. Fig. 3 shows that
this situation is even bleaker for individual crawlers with
both APWG and GSB’s Canvas fingerprints accounting for
only 0.02% and 0.07% of all visitors. Thus, despite their
massive network infrastructure, due to this extreme lack in
the diversity of fingerprints, attackers can specifically evade
these crawlers without fear of losing any potential victims.

3.2.2 Diverse Repeated Reporting Experiment
In August 2020, we performed another control experiment.

The goal of this was to study any potential effects that
repeated reporting of token URLs from diverse sources could
have on the profiling information that is collected from the
crawlers. We note that during our 10-week longitudinal study,
we only registered a single domain and reported each token
site’s subdomain created under it only a single time to each
crawler. To replicate this setup, we created a similar configu-
ration in this study by creating 50 different subdomains under
a single .xyz domain (called SR). We then set up an alternate
configuration for diverse and repeated reporting (called DRR)
by using 5 different .xyz TLDs. On a single day, we used
PhishPrint to report each of the 50 SR URLs to 10 different
crawlers from a U.S. IP address (namely: AlienVault, APWG,
Fortinet, GSB, SmartScreen, Norton, OpenPhish, Outlook,
Sophos and ZeroCert). On the same day, we used a private
VPN provider to connect to 10 IP addresses located in 7
different countries around the world and submitted 10 reports
on each domain in DRR set to all the 10 crawlers. For some
crawlers such as Outlook and APWG which use e-mail re-
porting, we created and used 10 different e-mail addresses for

each domain in the DRR set. This setup ensured that an equal
number of URL reports get sent from each configuration (50
to each crawler) in order to keep the comparison balanced.

Table 3 shows an overview of the comparison between the
profiling results obtained from the two configurations. We
can see that despite repeated diverse reporting, the URLs
reported via the SR configuration involved more sessions and
more crawler IP addresses. We surmise that this could be a
result of some crawlers deliberately ignoring repeated reports
even if coming from diverse sources. For example, we noticed
that PhishTank’s website shows an error message saying
the URL is already submitted even if we try to do a repeat
submission from a different account. The final rows show the
Jaccard Similarity between the IP addresses and the <F,C,W>
sets from the two configurations. The high variability in
the IP addresses used by crawlers could have caused the
low similarity between the two sets. It is to be noted that if
we consider the associated Autonomous Systems of the IPs
instead the similarity rises to about 0.57. Furthermore, break-
ing these results down by crawlers shows that all the ASs
used by 8 of the 10 crawlers in the DRR set are also present
in the SR set. The same is the case with <F,C,W>s where 4
of the 6 crawlers from which we collected <F,C,W>s have
a complete match. Further, the crawlers such as OpenPhish
and AlienVault which showed very little diversity in their IP
space previously, have displayed exactly the same behavior in
the DRR set as well. Overall, this experiment shows that using
a non-diverse URL reporting setup as we did in our study can
still enable the collection of valuable profiling information.

4 Evading Security Crawlers
Our analysis of the profiling data from the crawlers showed

that five of the six cloaking vectors we devised can exploit
existing weaknesses in crawlers: Real Browser Anomaly,
Crawler Artifacts Anomaly, IP, AS and <F,C,W> fingerprint
Blocklists. In this section, we present supplementary
experiments that directly put these five vectors in action
against crawlers as well as real users with goals to directly
assess and confirm their evadability benefits as well as false
positive consequences for the attackers.

4.1 Phishing Experiments
In order to confirm the real-world utility of these vectors,

we build phishing websites powered with the candidate
cloaking vectors, self-report them to crawlers and measure
how long they will survive without getting blocked in any of
the browsers (via a Monitoring Module). Here, our approach
will be similar to prior works [37, 39]. These experiments
constitute the Attack Module 8 depicted in Fig. 1.

4.1.1 Setup
For these experiments, we built two kinds of phishing

websites: Baseline sites which do not employ any cloaking
and PhishPrint-cloaked sites which use all the five cloaking
vectors. The cloaked sites show benign content if any of the 5

USENIX Association 30th USENIX Security Symposium 3783

vectors decide that the visitor should be given a cloaked page.
All the cloaking logic is implemented in server-side using
a simple PHP script. The phishing payload stays encrypted
(using AES-256) until the cloaking logic returns a key to
the client. If any of the five vectors decide not to show the
phishing content, then some benign content gets loaded into
the pages instead of the phishing payload. We have used two
kinds of simulated phishing payloads: “PayPal” and “Bank of
America”. For benign payloads, we built multiple simple web
pages discussing topics such as food and famous personalities.

As mentioned before in §2, the Profiling Module needs to
be running in parallel during these experiments in order to
keep the IP and fingerprint blocklists updated with the latest
data. Hence, we have started performing this experiment
25 days after Profiling Module’s deployment (first week
of February 2020) to give some bootstrap time for the two
blocklists to be populated while still allowing both modules
to run in parallel. In the rest of this section, we will discuss
the site monitoring, reporting and web site configuration
aspects of these experiments.

Monitoring Module. As the ultimate goal of the attacker
is to be able to continue to deliver phishing content to the
victims, we built a fully automated Monitoring Module to
periodically check if phishing sites are still functional or
blocked in web browsers. We have chosen Chrome, IE and
Opera desktop browsers for this as they employ different
blocklists (GSB, SmartScreen and Opera) that cover most
of the web users [37, 39]. The module loads phishing sites
inside the browsers and checks if the sites are blocked or
not. As browser automation libraries tend to disable browser
blocklists [37], we used a web-based cross-browser testing
platform [4] for this purpose. The monitoring module runs a
headless Chrome browser to open the target site in the testing
platform and uses an OCR library to do the liveness check.
We found this to be a more light-weight approach than using
VMs as suggested in [37]. We did this check every 2 hours for
each site. Note that while previous studies have done this mon-
itoring for 3 [37] or 7 [39] days, we kept monitoring our sites
for a period of 1 month in order to capture any late blocking
that might happen due to our aggressive reporting strategy.

Aggressive Reporting. We used our Profiling Module’s
Web Scan Requestor (2 in Fig. 1), to self-report all our web-
site to crawlers. In contrast to prior works that reported each
phishing site only one time [37,39] to a few crawlers, we opted
for a much more aggressive approach where we repeatedly
report each site (once daily) over a period of two weeks to all
the 23 crawlers. It is to be noted that during the longitudinal
study, we noticed that a couple of crawlers share most of their
URLs to VirusTotal. Confirming similar behavior, we found
that all our phishing sites have been shared with VirusTotal
too. As a result, our phishing sites were shared and scanned by
more than 80 crawlers that are hosted on VirusTotal as well.

Site configuration. For our experiments, we set up a total
of 26 phishing websites. All 26 websites were hosted with

accounts by the same hosting provider (Hostinger) and had
different domain names. We used 6 of these as baseline sites
(with 3 free accounts) and 20 of these as the cloaked sites
powered by the 5 cloaking vectors (with 1 paid account).
It is to be noted here that despite multiple requests and
conversations about the nature of our research, we were
unsuccessful in getting immunity for any of our accounts
from the hosting provider. We chose only 6 sites for our
baseline as there are already prior studies [39] establishing
clearly the baseline blocklisting speed. For the same reason,
we did not choose to register separate domains for these 6
baseline sites but used the free subdomains (TLD+2 level)
provided by the hosting provider to conserve financial
resources. For the cloaked sites, we registered 20 different
.xyz domain names as we were unable to obtain that many
free subdomains. Other than this minor difference, the setup
for the experiments for both sets of sites is exactly the same.
In order to prevent pre-emptive blocklisting of our websites
without scanning [37], we avoided deceptive keywords such
as ‘paypal’ or ‘bank’ in the URLs for the phishing pages. We
instead used benign content related words for all the URLs.
4.1.2 Results

The results show that our 6 baseline sites were quickly
blocked on all the browsers. Chrome (GSB) was the quickest
to do this in 3 hours and 10 minutes. In fact, all the browsers
blocked the 6 sites in about 10.5 hours. This agrees well with a
recent large-scale study done on browser blocklists [39] which
showed that the fastest blocklist (GSB) would block most of
its 324 baseline sites in about 3 hours time. On the other hand,
none of the 20 PhishPrint-cloaked sites were blocked in the
first four days despite repeated reporting to all the crawlers. In
the one-month period in which we did the monitoring, only 2
sites (say, ‘A’ and ‘B’) got blocked as shown in Table 4. A was
blocked on day 58 while B got blocked on day 16. It is to be
noted that even for cloaked sites such lengthy blocking time is
highly unusual. For reference, [39] showed that most cloaked
sites either get blocked in a few hours or remain unblocked.
Given this, we surmised that both the blocked sites were due
to manual vetting. To confirm this, we investigated site A’s
case by reloading the site in the browser that first blocked
it (Opera). We noted that the browser message specified the
source for the blockage as a third-party report from Phish-
Tank. When we looked up the URL on PhishTank, we saw
that our site was manually verified as a phishing URL by 3
users thus confirming our suspicions. Interestingly, we note
that 1 user has also marked our site as a benign site.

As for site B, we found that it was not blocklisted by any
browser, but was taken down by xyz registrar on day 16
due to an abuse report. We were unable to get further details
on what the source for this report could be. The remaining
18 cloaked sites continued to be functional throughout the

8Our cloaked sites experienced a 10 hour down time after A got blocked
as our hosting provider disabled our account. We then moved all our sites to
another provider (Namecheap).

3784 30th USENIX Security Symposium USENIX Association

Type # Sites Alive Time

Baseline 6 3h, 10min
Cloaked site A 1 4 days, 11h
Cloaked site B 1 15 days, 14h

Table 4: Lifetimes of the blocked phishing sites

monitoring period of 1 month. We verified manually that
even at the time of writing this manuscript in September
2020, the 18 remaining phishing sites are still live and
loading the phishing payloads on all the major browsers.
Thus, we can conclude that the five cloaking vectors powered
by PhishPrint are very effective in vastly increasing the
survival chances and lifetimes of phishing websites.

4.2 User Study Experiment
Along with evasive power, we also need to study the speci-

ficity of these vectors and confirm that they are not excluding
a lot of potential victims. For this, we did an empirical evalua-
tion with the help of a user study. We modeled our experiment
as a survey on the MTurk platform as this allowed us to ensure
that unique workers take part in our experiment. We designed
our experiment such that after obtaining prior user consent,
users are exposed to a web page with exactly the same client-
side fingerprinting code and server-side cloaking logic as in
the phishing experiments. However, we removed the phish-
ing payloads for this experiment to avoid showing malicious
content to real users. Also, same as in the phishing experi-
ments, the IP and <F,C,W> blocklists were powered by the
data collected by the profiling module in real-time. In the end,
we made measurements of whether or not any of the cloaking
vectors decide to show cloaked content to the visiting users.

We received an exemption from our university IRB board
for this experiment. In compliance with the terms of the
exemption, we took measures to not store any sensitive
information persistently such as the <FCW>s or any other
information identifying the users such as IP addresses and
request headers in our web servers. But, we did store the AS
information for each client’s IP address in order to gauge the
geographical variety in locations of participants.

We performed this experiment from the third week of
February 2020 to the first week of March 2020 as the profiling
module was collecting data for the longitudinal study. 1150
unique users participated in our study that lasted about 16
days. 66% of the participants in our study were from the
United States. However, the remaining 34% of participants
were spread across 35 countries in 6 continents. Overall,
the results showed that PhishPrint-powered cloaking logic
decided to show phishing content for 79% of the users. These
numbers are 76.1% for U.S. users and 81.4% for non-U.S.
users. This shows that the PhishPrint-based evasive cloaking
logic is largely specific to crawlers and can inflict harm on
a large portion of users irrespective of their geographical
location.

Source # # # # Normalized
Users Distinct Unique Shared Entropy

<F,C,W> - Ours 1007 592 469 123 0.865
Canvas - [29] 118,934 8,375 5,533 2,842 0.491
Canvas - [22] 2,067,942 78,037 65,787 12,250 0.407

Table 5: Analysis of fingerprints from user studies

False Positive Analysis. Breaking down the 21% false
positive rate by cloaking vectors, we saw these numbers:
<F,C,W> Fingerprint Blocklist: 17.5%, AS Blocklist: 1.7%,
Crawler Artifacts: 1%, Real Browser: 0.7%, IP Blocklist:
0.1%. This was expected as other than fingerprints, all
others cloaking vectors are known to be specific either by
definition (anomaly vectors and ASs) or due to the nature of
the identifier used (chance of a crawler and a victim sharing
the same exact IP address is very low).

In order to understand the reasons for the overlap between
<F,C,W> fingerprints of MTurk users and crawlers, we sought
a more permissive IRB exemption allowing us to store user
fingerprints. We then performed a second MTurk study during
a 10-day period in January 2021 with 1007 participants
in which we collected 592 distinct <F,C,W> fingerprints.
Table 5 shows more details of these fingerprints. While 469
of the collected fingerprints are unique, there are also 123
“shared” fingerprints each of which belong to at least 2 users.
The two most popular of these shared fingerprints were only
among 23 and 20 users. Further, more than 25% of them
are shared among at least 5 users and more than 55% of
them are shared among at least 3 users each. This shows that
while there are a large number of unique fingerprints, there
also exist many shared fingerprints with no small subset of
fingerprints being extremely dominant. Interestingly, prior
fingerprinting studies done on a much larger scale also reveal
a similar trend with comparable numbers of both unique and
shared fingerprints as shown in the table.

To compare this user data with crawler fingerprints, we first
updated our crawler fingerprints. For this, we used PhishPrint
to re-generate 50 new token URLs per crawler and solicited
scans again which yielded 57 crawler fingerprints. By
combining this with data from two prior experiments (Table
1, §3.2.1), we obtained a total of 256 distinct crawler finger-
prints from across a period of 13 months. Comparing this
with MTurk data, we found that 137 users (13.6%) had one of
32 fingerprints that were colliding with the crawlers. Of them,
more than 90% of the users had a shared fingerprint thus
indicating that most of the collisions were due to those finger-
prints which are already common among the users themselves.
The breakdown of this data by OS is reported in Table 7.

When analyzing the fingerprint specificity results, it is im-
portant to note how all the fingerprint numbers continue to in-
crease as the scale of the study increases. For example, in [22],
about 2 million users had 78,037 distinct and 12,250 shared
fingerprints. On the other hand, the number of fingerprints
collected from all 23 crawlers (including the VT ecosystem

USENIX Association 30th USENIX Security Symposium 3785

Canvas (s) Font (s) Total (s)

Mean 0.09 3.97 4.26
Median 0.06 2.36 2.52
90% 0.16 8.88 9.4

Table 6: Time taken for obtaining BFPs during user study

containing 80 crawlers) across a period of one year is only 256.
Thus, in the worst case, even if all 256 of these fingerprints end
up as shared fingerprints in a larger-sized user study, we can
expect a significant population of victims to remain vulner-
able to the proposed attacks. However, this trend of increase
in fingerprints as the study scale increases points to the need
for a much larger user study to accurately assess the speci-
ficity of fingerprints. While such a dedicated large-sized user
study is outside our means, in §3.2.1, we showed how we used
AmIUnique’s data of 467K users for directly computing the
fingerprint collisions between crawlers and potential victims.

Further, we found that Bitdefender, PhishTank,
SmartScreen, APWG and GSB are the main five crawlers
associated with the collisions accounting for 45%, 43%,
28%, 7% and 6% of the collisions respectively. Altogether,
these five crawlers account for 98% of the collisions (134
users). Note that these are the same five crawlers that we
have already studied in our AmIUnique-based specificity
experiment on a much larger scale (§3.2.1).

Timing Analysis. One might also argue that such sophis-
ticated fingerprinting based cloaking logic will result in a
computational time delay that can reduce the effectiveness
of social engineering attacks launched on real users. In
order to see if this is true, we measured the time required to
perform the cloaking logic for the users in our first user study.
Our results (Table 6) show that most of the time is spent in
obtaining font fingerprints with mean time for the cloaking
logic being 4.26 seconds. At first, it appears that it might
be possible to reduce the cloaking logic time by using a
“progressive” logic such as extracting and checking the faster
fingerprints first before going to the slower ones. But this is
not productive for cloaking attacks as victim machines will
progress all the way to the end of the cloaking logic anyway.
However, given that the mean time to fully load a web page
on a desktop machine is about 10.4 seconds [8], attackers
can use that to their advantage. As our fingerprinting code
is very light in size (Appendix D), an attacker can potentially
load and start to run it immediately while simultaneously
“pretending” to be loading a site. This way, the attacker can
gain a sufficient compute time budget for the cloaking logic.

5 Countermeasures
The CVD Scores reported in Table 1 can serve as a “report

card” for crawlers trying to prioritize their mitigation efforts
across different areas of weaknesses as we discuss below.

Browser Anomalies. At the outset, this seems like a
simple question of applying best practices as some crawlers
already have near-perfect scores. However, this is only true

to a certain extent. One issue is that many crawlers process
a large number of URLs daily. Hence, it is common practice
to use headless browsers for scalability [16]. However, this
results in an arms race9 between such browsers and their
detectors [25]. While our rudimentary crawler artifact vectors
did not take such sophisticated headless browser detection
features into account, it should be trivial to include them
in PhishPrint profiling pages and come up with a much more
sophisticated anomaly cloaking vector. Further, biometric
behavior-based bot detection systems can further complicate
this issue for crawlers [18] opening room for new evasion
vectors. While handling all these issues might involve elab-
orate browser changes, ML-driven crawler behavior, and/or
scalability compromises, we suggest the vendors to prioritize
on fixing the simpler issues. All crawlers should visit each
URL atleast once with a “Real Browser” that supports all
web APIs and try to hide well-known artifacts [26, 45, 46].

Network Data. For handling these weaknesses, crawlers
have to diversify their network infrastructure in terms of
both IP addresses as well as geographical diversity and using
residential networks. GSB and PhishTank are some of the
best examples of this. However, during our vulnerability
disclosure, some companies have mentioned that it might be
difficult for them to address this due to financial implications.
In these cases, we suggest that vendors consider approaches
such as using peer-to-peer VPN networks [7] and sharing
URLs with other crawlers to help improve network diversity.

Advanced Fingerprints. Our study found that there was
extremely limited diversity of <F,C,W>s across the entire
ecosystem. The maximum <F,C,W> blocklist CVD score
across all crawlers was only 9.3 with several crawlers having
less than 10 distinct <F,C,W>s across hundreds of scanned
URLs. Among the three individual fingerprinting vectors of
<F,C,W>, improving font diversity is the easiest to fix as it
only needs increasing the number of “font sets" installed in
the crawler instances. When doing this, it should be ensured
that the fonts match the general font set characteristics of
users from that geolocation. Some vendors already started
doing this as a result of our disclosures. However, the Canvas
and WebGL fingerprints require more intricate mitigations.
Currently, there are 3 approaches for this:
• Blocking. [24] proposed an ML-based script blocking

solution for fingerprinting code. However, such solutions
cannot be used by crawlers as the presence of such blocking
can itself be used for evasion. Instead of blocking, URLs
can be isolated for further automated/human analysis.
However, the attackers can even fingerprint such analysts’
browsers and add their fingerprints to their blocklists.
While victim-side blocking solutions might still work, the
problem here is that of deployment. Unless such a client-
side solution is baked into all major browsers, it might not
achieve good coverage. This problem is further exacerbated

9At the time of writing this manuscript in October 2020, unfortunately
the headless detectors seem to be winning this battle.

3786 30th USENIX Security Symposium USENIX Association

by the fact that many phishing victims may also be slow
adopters for technologies such as security extensions.

• Uniformity. Uniform software re-rendering approaches
that result in the same fingerprints for all users have also
been proposed [50]. However, these also have the same cov-
erage issues as above. Unless, a majority of all users adopt
the same solution, the resulting uniform fingerprint can
itself be used as an evasion vector while not losing victims.

• Randomization. This works by randomizing the finger-
prints in each browsing session [35]. Brave browser has
adopted this to devise a solution for Canvas and WebGL fin-
gerprinting by adding small random noise to the generated
data [31]. This is the most promising approach for crawlers
as it does not need to be adopted universally for this to work.
Hence, we recommend vendors to adopt similar transpar-

ent randomization-based defenses in order to defend against
Canvas and WebGL-based fingerprinting attacks. Another
possible solution is to use dynamic software reconfiguration
approaches [28], although these have scalability limitations.

URL Reporting. It is also important for all the crawler
vendors to prevent abuse of their reporting infrastructure. In
this research, by simply registering a single domain and self-
reporting its wild card subdomains, we were able to collect a
large amount of sensitive information such as fingerprints and
IP addresses of many crawlers. We discussed early on in the
paper about how segregating profilable infrastructure based
on candidate domains will work in an attacker’s advantage
(§1: TLD+1 Bias). However, the crawlers can at least use
such separation techniques to divide their limited crawler
resources between submissions from vetted and non-vetted
URL reporters. Crawler vendors can also leverage existing
spam and anomaly detection research work to monitor and de-
tect abuse of URL reporting services and prevent anomalous
submissions of token URLs for profiling of crawlers.

Some vendor-specific recommendations we make are
in Appendix B.

6 Discussion
Vulnerability Disclosure. We completed an effective vul-

nerability disclosure process. We submitted detailed vulner-
ability reports to all 23 security crawlers (21 vendors) that we
have specifically profiled. 9 vendors (10 crawlers) have so far
acknowledged our results including Google (GSB), Microsoft
(SmartScreen, Outlook), Norton, AlienVault and Sophos. We
had follow-up discussions over e-mail and online meetings
with 7 vendors on our results. Of the 9 vendors, 3 mentioned
that they were already working on changes or were aware of
these limitations. 6 of them have reported to be working on
follow-up changes with one vendor mentioning about having
tasked multiple engineers to work on the problems we pointed
out in our paper. We also received a Google Vulnerability Re-
ward for our research. Our reward amount was the highest in
the category of “abuse-related methodologies” indicating both
“High Impact” and “High Probability” [9] of the cloaking at-

tacks we discovered. As a follow up, we also received three
Vulnerability Research Grants from Google encouraging us
to continue studying their security crawlers in the future.

Single TLD+1 Bias. One might argue that using multiple
subdomains under a single TLD+1 will deliver a lot less
diverse profiling information from crawlers than using
multiple TLD+1s. However, we show in §4.1.2 that the
diverse profiling information we collect from a single .com
domain generalizes well enough to “protect” phishing pages
hosted on 20 .xyz domains. We also performed a small
control experiment using 5 .xyz domains which confirms the
same (§3.2.2). The extensive positive feedback we received
from the crawler vendors during vulnerability disclosure also
attests to the sensitivity of the information we were able to
gather by using a single registered domain. Most importantly,
we argue that if a crawler were to choose to segregate their
“profilable” infrastructure based on domain names, then it
would only end up making an attacker’s job easier. This is
because the attacker can then begin to first use a candidate
domain name in a benign mode for quickly collecting the
limited profile of the segregated crawling infrastructure. They
can then switch that same domain into a malicious mode
by hosting phishing content hidden with the help of forensic
information found during the profiling stage.

Limitations. While PhishPrint evaluates crawlers by
avoiding phishing experiments, there are some use cases
where these experiments are indispensable. For example,
prior works such as [39] that focused on speed of population
of browser blocklists and [40] that focused on dynamic
label changes of URLs can only be accomplished with the
help of phishing experiments. Furthermore, our system will
be unable to measure crawler resilience against dynamic
cloaking attacks such as the “Timing” attacks studied in [52]
as we are limited to only the profiling data that can be
captured from the crawlers. Nevertheless, PhishPrint presents
a scalable solution to measure a wide variety of weaknesses
of crawlers and thus can be considered complementary to
existing phishing experiment-based designs.

We also note that the measurements such as “# IPs” that we
presented in Table 1 could be overcounted due to the presence
of URL sharing between crawlers (except when such counts
are 1 or 0). This is a difficult problem to solve given that
there might be a lot of undisclosed URL sharing happening
between various security entities. However, it is important to
recognize that this only means that our measurements might
over-estimate a crawler’s infrastructure. This means that the
weaknesses of crawlers could in reality be more than mea-
sured. We experienced this during disclosure when certain
entities have conceded that the actual number of IP addresses
that they own is less than what we showed in our report.

Finally, we would like to point out the “double-edged
sword" nature of PhishPrint. While it can allow researchers
to study crawlers in a low-cost, highly scalable manner, at the
same time, it might allow attackers to host long-lasting evasive

USENIX Association 30th USENIX Security Symposium 3787

malicious websites at a low-cost. For this purpose, we have
made recommendations to monitor abuse of reporting APIs
to all crawlers in §5. If such monitoring does come into effect
as a result of this study, we would welcome that as another
positive security outcome. Furthermore, security researchers
can still seek special permissions to bypass such monitors and
continue their evaluation of crawlers in a low-cost manner.

Future Work. Given the low-cost and scalable nature
of PhishPrint, we would like to continue to use it to study
more cloaking vectors. In the future, we would like to study
the resilience of crawlers against some other fingerprinting
vectors such as MediaDevices, Web Audio and Battery
and Sensor Web APIs. Furthermore, we also want to study
the potential of developing ML-driven cloaking attacks using
the behavioral biometrics aspects of crawlers.

Ethical Considerations. Our 70-day profiling study re-
sulted in submitting about 840 token URLs to each crawler at
the rate of 12 URLs per day. During the 2-week period when
our 20 phishing URLs were reported as well, this number
went up to 32 per crawler per day. While we concede that the
time spent in scanning these URLs is a waste for the crawlers,
we argue that this number is very small in comparison to
the huge number of URLs they receive each day. We have
also disclosed our URL submission frequency to all crawlers.
Moreover, our method of submitting token URLs to crawlers
to gain insights is similar to some prior works [37,39,40]. We
assess the impact of our token site submissions with Phish-
Tank as an example. With the help of PhishTank’s web portal
we were able to determine that our token URLs from both ex-
periments accounted for less than 0.8% of their total received
URLs during that period. We argue that the security benefits
gained by the measurements from our study far outweigh this
minor overhead that the crawler vendors experienced during
our experimentation period. Some vendors have explicitly
mentioned the same and asked us to continue the study and
share new insights in the future. With regards to the simulated
phishing websites used during the experiments, we did not
share those URLs with any human users and only submitted
them to the crawlers. We also made sure that they are com-
pletely non-functional by removing all form submit buttons
in order to prevent effects of accidental exposure to users.
Similar efforts were also made previously [37, 40]. Finally,
we also obtained IRB exemptions for both our user studies.

7 Related Work
The closest works to PhishPrint are [32, 37] and par-

tially [39, 52] as all of them involved evaluating security
crawlers against cloaking attacks using simulated phishing
sites. In our research, we proposed an alternate highly scalable
solution that avoids phishing sites and instead directly relies
on profiling the crawlers to find new cloaking weaknesses.
In Appendix C, we show that this alternate approach can
capture the same measurements as prior works. However, as
discussed in §6 (Limitations), while phishing experiments

work in all contexts, PhishPrint is restricted to measuring
only those cloaking weaknesses that can be gleaned from the
passive profiling information extracted from crawlers. As a
result, our design can be considered a complement that can
co-exist with the current phishing site-based approaches.

In terms of cloaking weaknesses, recent works such as [32]
and partially [52] have focused on testing the resilience of
crawlers against cloaking attacks powered by CAPTCHAs,
human-interaction detectors and basic browser fingerprinting
techniques such as Cookies and Referer headers. In our
work, we found wide-spread anomalies in crawlers such as
artifacts that give away signs of browser automation and
incapacity to execute advanced Web API code. We also found
great limitations in the diversity of network infrastructure
(IP, AS space) as well as advanced fingerprints (Canvas,
WebGL and JS-based Font) associated with crawlers. We
developed new cloaking attacks from these weaknesses. Note
that PhishPrint can also be easily re-deployed to evaluate
crawlers against many of these cloaking attacks in [32, 52]
(except timing attacks) in the future. Many research works
have focused on studying in-the-wild cloaking and evasive
techniques [23, 38, 39, 42, 49, 52] which was not our focus.

In order to collect and analyze the profiling data
from crawlers, we applied techniques studied in prior
works. [45, 46] have described techniques to detect browser
automation indicators and anomalies of privacy-preserving
browsers which we applied in our study to discover artifacts
of crawlers. Further, we also successfully applied advanced
browser fingerprinting techniques described and developed
in [29, 36] to capture crawler fingerprints. We also relied
on other works in browser fingerprinting to analyze the
specificity [22, 29, 47] and propose suitable countermea-
sures [19, 28, 30, 35, 43, 44] for the crawlers. On a related
note, while we measured the applicability of fingerprinting to
launch attacks on security crawlers, some recent works have
focused on a complementary question of how fingerprinting
can be used to yield security benefits [13, 27, 44, 48].

8 Conclusion
We built a novel, scalable, low-cost framework

named PhishPrint to enable the evaluation of web se-
curity crawlers against multiple cloaking attacks. PhishPrint
is unique in that it completely avoids the use of any simulated
phishing sites and instead relies on benign profiling pages.
We used PhishPrint to evaluate 23 crawlers in a 70-day
study which found several previously unknown cloaking
weaknesses across the crawler ecosystem. We confirmed
the practical impact of our findings by deploying evasive
phishing web pages and performing user studies. We also
discussed concrete mitigation measures in areas of crawling
and reporting infrastructures. We have relayed the found
weaknesses to the crawler vendors through a vulnerability
disclosure process that resulted in some remedial actions as
well as multiple vulnerability rewards.

3788 30th USENIX Security Symposium USENIX Association

Acknowledgements
We thank Anish Chand for working on an early prototype

of PhishPrint as a proof of concept. We also like to
acknowledge Julian Gale and Christopher Martin for helping
in building the Web Scan Requestor module. We convey our
thanks to Roberto Perdisci for providing us with valuable
research advice throughout the project. We are grateful to
all the concerned PC members at IEEE SSP 2021 and Usenix
Security 2021 for providing detailed constructive feedback.
Finally, we thank Pierre Laperdrix and the AmIUnique project
team for enabling access to crucial browser fingerprinting
data and code. This work was done with help of funds from
UNO Office of Research and UNO Tolmas scholars program
whose support we hereby gratefully acknowledge.

References
[1] Advanced outlook.com security for office 365

subscribers. https://web.archive.org/web/
20200901032551/https://support.microsoft.
com/en-us/office/advanced-outlook-com-
security-for-office-365-subscribers-
882d2243-eab9-4545-a58a-b36fee4a46e2.

[2] Amiunique. https://amiunique.org.
[3] Browser market share worldwide. https:

//gs.statcounter.com/browser-market-share.
[4] Browserling. https://www.browserling.com/.
[5] Google safe browsing block all my subdomains instead

only effected one. https://support.google.com/
webmasters/thread/17514260?hl=en.

[6] Google safe browsing erroneously blocking my whole
domain and subdomains. https://support.google.
com/webmasters/thread/32022154?hl=en.

[7] Hola better internet – access censored sites.
https://hola.org/faq.

[8] Page load times. https://backlinko.com/page-
speed-stats.

[9] Program rules – application security: "reward
amounts for abuse-related methodologies". https:
//www.google.com/about/appsecurity/reward-
program/.

[10] Teams powers office 365 growth. https:
//office365itpros.com/2020/04/30/office365-
teams-power-growth/.

[11] Virustotal. https://www.virustotal.com/gui/.
[12] Xyz domain name policies. https://nic.

monster/files/XYZ-registry-domain-name-
policies.pdf?v=2.0.

[13] Furkan Alaca and Paul C. van Oorschot. Device
fingerprinting for augmenting web authentication:
classification and analysis of methods. In ACSAC 2016.

[14] APWG. Phishing activity trends report: 3rd quarter,
2019. https://docs.apwg.org/reports/apwg_
trends_report_q3_2019.pdf.

[15] Michael Archambault. Microsoft security reports a mas-
sive increase in malicious phishing scams. https://
www.digitaltrends.com/computing/microsoft-
security-massive-increase-phishing-scams/.

[16] Eric Bidelman. Getting started with headless chrome.
https://developers.google.com/web/updates/
2017/04/headless-chrome, Jan 2019.

[17] Yinzhi Cao, Song Li, and Erik Wijmans. (cross-
)browser fingerprinting via OS and hardware level
features. In NDSS 2017.

[18] Zi Chu, Steven Gianvecchio, Aaron Koehl, Haining
Wang, and Sushil Jajodia. Blog or block: Detecting blog
bots through behavioral biometrics. Comput. Networks,
2013.

[19] Amit Datta, Jianan Lu, and Michael Carl Tschantz.
Evaluating anti-fingerprinting privacy enhancing
technologies. In WWW 2019, pages 351–362.

[20] MDN Web Docs. Canvas api. https://developer.
mozilla.org/en-US/docs/Web/API/Canvas_API.

[21] MDN Web Docs. Webgl: 2d and 3d graphics for
the web. https://developer.mozilla.org/en-
US/docs/Web/API/WebGL_API.

[22] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit
Baudry. Hiding in the crowd: an analysis of the
effectiveness of browser fingerprinting at large scale.
In WWW 2018, pages 309–318.

[23] Luca Invernizzi, Kurt Thomas, Alexandros Kaprave-
los, Oxana Comanescu, Jean Michel Picod, and Elie
Bursztein. Cloak of visibility: Detecting when machines
browse a different web. In IEEE Symposium on Security
and Privacy, SP 2016, pages 743–758.

[24] Umar Iqbal, Steven Englehardt, and Zubair Shafiq.
Fingerprinting the fingerprinters: Learning to
detect browser fingerprinting behaviors. CoRR,
abs/2008.04480, 2020.

[25] Paul Irish. paulirish/headless-cat-n-mouse.
https://github.com/paulirish/headless-
cat-n-mouse, Jan 2018.

[26] Jordan Jueckstock and Alexandros Kapravelos. Visi-
blev8: In-browser monitoring of javascript in the wild.
In IMC 2019, pages 393–405.

[27] Pierre Laperdrix, Gildas Avoine, Benoit Baudry, and
Nick Nikiforakis. Morellian analysis for browsers:
Making web authentication stronger with canvas
fingerprinting. In DIMVA 2019, pages 43–66.

[28] Pierre Laperdrix, Benoit Baudry, and Vikas Mishra.
Fprandom: Randomizing core browser objects to break
advanced device fingerprinting techniques. In ESSoS
2017, pages 97–114.

[29] Pierre Laperdrix, Walter Rudametkin, and Benoit
Baudry. Beauty and the beast: Diverting modern web
browsers to build unique browser fingerprints. In IEEE
Symposium on Security and Privacy, SP 2016, pages
878–894.

USENIX Association 30th USENIX Security Symposium 3789

https://web.archive.org/web/20200901032551/https://support.microsoft.com/en-us/office/advanced-outlook-com-security-for-office-365-subscribers-882d2243-eab9-4545-a58a-b36fee4a46e2
https://web.archive.org/web/20200901032551/https://support.microsoft.com/en-us/office/advanced-outlook-com-security-for-office-365-subscribers-882d2243-eab9-4545-a58a-b36fee4a46e2
https://web.archive.org/web/20200901032551/https://support.microsoft.com/en-us/office/advanced-outlook-com-security-for-office-365-subscribers-882d2243-eab9-4545-a58a-b36fee4a46e2
https://web.archive.org/web/20200901032551/https://support.microsoft.com/en-us/office/advanced-outlook-com-security-for-office-365-subscribers-882d2243-eab9-4545-a58a-b36fee4a46e2
https://web.archive.org/web/20200901032551/https://support.microsoft.com/en-us/office/advanced-outlook-com-security-for-office-365-subscribers-882d2243-eab9-4545-a58a-b36fee4a46e2
https://amiunique.org
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share
https://www.browserling.com/
https://support.google.com/webmasters/thread/17514260?hl=en
https://support.google.com/webmasters/thread/17514260?hl=en
https://support.google.com/webmasters/thread/32022154?hl=en
https://support.google.com/webmasters/thread/32022154?hl=en
https://hola.org/faq
https://backlinko.com/page-speed-stats
https://backlinko.com/page-speed-stats
https://www.google.com/about/appsecurity/reward-program/
https://www.google.com/about/appsecurity/reward-program/
https://www.google.com/about/appsecurity/reward-program/
https://office365itpros.com/2020/04/30/office365-teams-power-growth/
https://office365itpros.com/2020/04/30/office365-teams-power-growth/
https://office365itpros.com/2020/04/30/office365-teams-power-growth/
https://www.virustotal.com/gui/
https://nic.monster/files/XYZ-registry-domain-name-policies.pdf?v=2.0
https://nic.monster/files/XYZ-registry-domain-name-policies.pdf?v=2.0
https://nic.monster/files/XYZ-registry-domain-name-policies.pdf?v=2.0
https://docs.apwg.org/reports/apwg_trends_report_q3_2019.pdf
https://docs.apwg.org/reports/apwg_trends_report_q3_2019.pdf
https://www.digitaltrends.com/computing/microsoft-security-massive-increase-phishing-scams/
https://www.digitaltrends.com/computing/microsoft-security-massive-increase-phishing-scams/
https://www.digitaltrends.com/computing/microsoft-security-massive-increase-phishing-scams/
https://developers.google.com/web/updates/2017/04/headless-chrome
https://developers.google.com/web/updates/2017/04/headless-chrome
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://github.com/paulirish/headless-cat-n-mouse
https://github.com/paulirish/headless-cat-n-mouse

[30] Pierre Laperdrix, Walter Rudametkin, and Benoit
Baudry. Mitigating browser fingerprint tracking:
Multi-level reconfiguration and diversification. In
10th IEEE/ACM International Symposium on Software
Engineering for Adaptive and Self-Managing Systems,
SEAMS 2015, pages 98–108.

[31] Peter Snyder Mark Pilgrim and Ben Livshits.
Fingerprint randomization. https://web.
archive.org/web/20200728132011/https:
//brave.com/whats-brave-done-for-my-
privacy-lately-episode3/.

[32] Sourena Maroofi, Maciej Korczynski, and Andrzej
Duda. Are you human?: Resilience of phishing
detection to evasion techniques based on human
verification. In IMC 2020, pages 78–86.

[33] Angela Moscaritolo. Beware: Phishing attacks are
on the rise. https://www.pcmag.com/news/beware-
phishing-attacks-are-on-the-rise.

[34] Keaton Mowery and Hovav Shacham. Pixel perfect:
Fingerprinting canvas in HTML5. Proceedings of
W2SP, pages 1–12, 2012.

[35] Nick Nikiforakis, Wouter Joosen, and Benjamin
Livshits. Privaricator: Deceiving fingerprinters with
little white lies. In WWW 2015, pages 820–830.

[36] Nick Nikiforakis, Alexandros Kapravelos, Wouter
Joosen, Christopher Kruegel, Frank Piessens, and
Giovanni Vigna. Cookieless monster: Exploring the
ecosystem of web-based device fingerprinting. In 2013
IEEE Symposium on Security and Privacy, SP 2013,
pages 541–555.

[37] Adam Oest, Yeganeh Safaei, Adam Doupé, Gail-Joon
Ahn, Brad Wardman, and Kevin Tyers. Phishfarm: A
scalable framework for measuring the effectiveness of
evasion techniques against browser phishing blacklists.
In IEEE Symposium on Security and Privacy, SP 2019,
pages 1344–1361.

[38] Adam Oest, Yeganeh Safaei, Adam Doupé, Gail-Joon
Ahn, Brad Wardman, and Gary Warner. Inside a
phisher’s mind: Understanding the anti-phishing
ecosystem through phishing kit analysis. In eCrime
2018, pages 1–12.

[39] Adam Oest, Yeganeh Safaei, Penghui Zhang, Brad
Wardman, Kevin Tyers, Yan Shoshitaishvili, and
Adam Doupé. Phishtime: Continuous longitudinal
measurement of the effectiveness of anti-phishing
blacklists. In USENIX Security 2020, pages 379–396.

[40] Peng Peng, Limin Yang, Linhai Song, and Gang Wang.
Opening the blackbox of virustotal: Analyzing online
phishing scan engines. In IMC 2019, pages 478–485.

[41] Peter Snyder and Ben Livshits. Brave, fingerprinting,
and privacy budgets. https://web.archive.org/
web/20200809060950/https://brave.com/brave-
fingerprinting-and-privacy-budgets/.

[42] Ke Tian, Steve T. K. Jan, Hang Hu, Danfeng Yao, and
Gang Wang. Needle in a haystack: Tracking down
elite phishing domains in the wild. In IMC 2018, pages
429–442.

[43] Christof Ferreira Torres, Hugo L. Jonker, and Sjouke
Mauw. Fp-block: Usable web privacy by controlling
browser fingerprinting. In ESORICS 2015, pages 3–19.

[44] Erik Trickel, Oleksii Starov, Alexandros Kapravelos,
Nick Nikiforakis, and Adam Doupé. Everyone is
different: Client-side diversification for defending
against extension fingerprinting. In USENIX Security
2019, pages 1679–1696.

[45] Phani Vadrevu and Roberto Perdisci. What you see is
NOT what you get: Discovering and tracking social engi-
neering attack campaigns. In IMC 2019, pages 308–321.

[46] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin,
and Romain Rouvoy. Fp-scanner: The privacy implica-
tions of browser fingerprint inconsistencies. In USENIX
Security 2018, pages 135–150.

[47] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin,
and Romain Rouvoy. FP-STALKER: tracking browser
fingerprint evolutions. In IEEE Symposium on Security
and Privacy, SP 2018, pages 728–741.

[48] Antoine Vastel, Walter Rudametkin, Romain Rouvoy,
and Xavier Blanc. Fp-crawlers: Studying the resilience
of browser fingerprinting to block crawlers. In MADWeb
2020.

[49] David Y. Wang, Stefan Savage, and Geoffrey M.
Voelker. Cloak and dagger: dynamics of web search
cloaking. In CCS 2011, pages 477–490.

[50] Shujiang Wu, Song Li, Yinzhi Cao, and Ningfei Wang.
Rendered private: Making GLSL execution uniform
to prevent webgl-based browser fingerprinting. In
USENIX Security 2019, pages 1645–1660.

[51] Katsunari Yoshioka, Yoshihiko Hosobuchi, Tatsunori
Orii, and Tsutomu Matsumoto. Your sandbox is blinded:
Impact of decoy injection to public malware analysis
systems. J. Inf. Process., 19:153–168, 2011.

[52] Penghui Zhang, Adam Oest, Haehyun Cho, Zhibo
Sun, RC Johnson, Brad Wardman, Shaown Sarker,
Alexandros Kapravelos, Tiffany Bao, Ruoyu Wang,
et al. Crawlphish: Large-scale analysis of client-side
cloaking techniques in phishing. In Proceedings of the
IEEE Symposium on Security and Privacy, 2021.

A Breakdown of MTurk Study Results
Table 7 breaks down the results of our second user study

described in §4.2 by OS. It is to be noted that the sum of
values in the third, fourth and fifth columns do not add up to
the values in the final row. This is because of a small amount
of overlap in the fingerprints across different platforms. The
final column shows the breakdown of the 137 collisions that
were seen with the crawlers’ fingerprints.

3790 30th USENIX Security Symposium USENIX Association

https://web.archive.org/web/20200728132011/https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/
https://web.archive.org/web/20200728132011/https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/
https://web.archive.org/web/20200728132011/https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/
https://web.archive.org/web/20200728132011/https://brave.com/whats-brave-done-for-my-privacy-lately-episode3/
https://www.pcmag.com/news/beware-phishing-attacks-are-on-the-rise
https://www.pcmag.com/news/beware-phishing-attacks-are-on-the-rise
https://web.archive.org/web/20200809060950/https://brave.com/brave-fingerprinting-and-privacy-budgets/
https://web.archive.org/web/20200809060950/https://brave.com/brave-fingerprinting-and-privacy-budgets/
https://web.archive.org/web/20200809060950/https://brave.com/brave-fingerprinting-and-privacy-budgets/

OS # # # # Norm. #
Users Distinct Unique Shared Entropy Collide

Windows 693 425 344 81 0.866 115
Chrome OS 35 17 12 5 0.707 8
Linux 16 16 16 0 1.0 0
iOS 29 10 6 4 0.568 0
Mac OS X 146 87 68 19 0.824 8
Android 88 41 26 15 0.731 6
All 1007 592 469 123 0.865 137

Table 7: OS-based breakdown
of fingerprints collected from our second user study

B Specific Recommendations
During our profiling study, we saw some specific problems

with PhishTank and GSB that are discussed below along with
suitable recommendations.

B.1 PhishTank
PhishTank shows the reported URLs on their website to

allow human analysts to investigate them. We found a couple
of serious issues with PhishTank’s web portal ecosystem that
are described below:

1. We noticed that repeated URL submissions are ignored by
PhishTank and not shown in their homepage even if the
URL is being re-submitted from a different user account.
An attacker can exploit this by simply self-reporting their
URLs to PhishTank a few days before adding malicious
content to them. This will effectively prevent the URL
from ever showing up on the homepage and thus reduce
the potential variety of visitors to which the website will
get exposed. To prevent this, PhishTank should bump up
URLs to their homepage whenever they get resubmitted
by a different user account.

2. We noticed that PhishTank allows their website visitors
to open and check the new URLs either in a new window
or in an iframe in PhishTank. However, in both cases, it
is possible for an attacker to check if the Referer points
to phishtank.com and trigger benign behavior. We have
used this same evasion logic in our experiments. Thus,
unless a human analysts copies the URL and pastes it in
their URL address bar, it will always carry the Referer
artifact, thus making it easy for an attacker to decide to
cloak and evade manual analysis. Hence, we strongly
recommend PhishTank to use Referrer-Policy headers
(for example, by setting it to same-origin) to combat
such evasion strategies.

B.2 Google Safe Browsing
During the initial setup phase of our longitudinal study, we

saw a couple of serious issues with Google Safe Browsing’s
(GSB) crawler infrastructure. As these are specific to GSB,
we are reporting them separately here.

1. We noticed that GSB’s infrastructure was restricting large-
sized data packets from being shipped out of their network

hosting their crawlers. For example, we were unable to ship
a 50 KB sized packet from our client code running in the
crawlers’ browsers to our servers. This was a peculiar re-
striction that we did not notice with any other crawler ven-
dor. As an attacker can easily abuse such properties for eva-
sion, we recommend GSB to re-consider such restrictions.

2. Further, we noticed that while all other crawlers take at
least a couple of seconds to execute our fingerprinting
scripts, GSB’s crawlers were able to do this in less than
30 milliseconds. Our preliminary manual testing with
many popular web browsers also showed that it takes at
least two seconds to execute this code. Attackers can thus
use such timing discrepancies to detect the presence of
a powerful JavaScript execution framework and trigger
their cloaking logic. We did not need to include these
timing-based side channels in our cloaking logic as we
were already able to handle GSB and other crawlers by
capitalizing on their limited fingerprint diversity.

C Evolution of Security Crawlers
As mentioned previously, PhishPrint is a crawler eval-

uation framework with an alternate non-phishing based
design that can conduct the evaluation of security crawlers
against many cloaking attacks that were done by prior works.
In order to demonstrate this, we use the profiling data we
obtained from crawlers during our 70-day study. Using this
data, we attempt to repeat the measurements made by authors
of PhishFarm [37]. This way we can study how the crawlers
have evolved from the time of their study to ours.

PhishFarm studied the effectiveness of four user agent-
based cloaking vectors (called as Filters B, C, D and F) and
1 blocklist-based cloaking vector (called Filter E) against
five crawlers. Four of those crawlers overlap with our work:
APWG, GSB, SmartScreen and PhishTank. So, we consider
these four crawlers here. Filter B serves malicious traffic to
only mobile user agents. Filters C and D serve malicious
traffic to US and non-US based clients that use Desktop GSB
browsers (Chrome, Firefox or Safari). Filter F is equivalent to
the JS execution anomaly vector (as it is tied to a JS onload
event execution). We were unable to report about Filter E as it
uses a specific .htaccess file for blocklisting for which we
do not have any access. Also, Filter A is a control filter and
can hence be ignored here. By analyzing the HTTP headers
and IP addresses in our collected profiling data, we were able
to gauge how well the crawlers would have defended against
filters: B, C, D and F if they were deployed in our reported
URLs.

Table 8 shows the results. The CVD scores for the four
vectors are shown in the four columns. The scores are shown
as fractions here in order to enable direct comparison with
results from [37] which reported the scores on a scale of 0
to 1. In the PhishFarm study, it was reported that except for
Filter B, all the other filters would be defended against by one

USENIX Association 30th USENIX Security Symposium 3791

Crawler Mobile Desktop - GSB Desktop GSB Real
US Non-US Browser

(B) (C) (D) (F)

APWG 1.000 0.942 0.690 1.000
GSB 0.000 0.347 0.741 0.914
SmartScreen 0.000 0.001 0.075 0.989
PhishTank 0.992 0.998 0.998 1.000

Table 8: CVD scores for the cloaking vectors studied in [37]

of the crawlers. Further, it was mentioned that after the study,
improvements have been made for defending against Filter B
as well. Our study confirms these results. Compared to their
study, both APWG and PhishTank have massively improved
with respect to Filters B, C and D thus indicating that they
have begun to use mobile user agents as well as GSB-based
desktop user-agents worldwide. However, unfortunately,
SmartScreen and GSB still do not adequately scan from
mobile user agents. Further, SmartScreen continues to
perform badly on both filters C and D. We investigated this
and found that this is because they mostly used IE-based web
browser agents which the filter explicitly avoids.

D Browser Fingerprinting Code
We provide below the JavaScript code snippets for Canvas,

WebGL and Font Fingerprinting that we adapted from
AmIUnique for profiling the crawlers.

1
2 function generate_canvas_data() {
3 try {
4 var canvas = document.createElement('canvas');
5 canvas.height = 60;
6 canvas.width = 400;
7 var canvasContext = canvas.getContext('2d');
8 canvas.style.display = 'inline';
9 canvasContext.textBaseline = 'alphabetic';

10 canvasContext.fillStyle = '#f60';
11 canvasContext.fillRect(125, 1, 62, 20);
12 canvasContext.fillStyle = '#069';
13 canvasContext.font = '11pt no-real-font-123';
14 canvasContext.fillText

("Cwm fjordbank glyphs vext quiz , \uD83D\uDE03", 2, 15);
15 canvasContext.fillStyle = 'rgba(102, 204, 0, 0.7)';
16 canvasContext.font = '18pt Arial';
17 canvasContext.fillText

("Cwm fjordbank glyphs vext quiz , \uD83D\uDE03", 4, 45);
18 canvasData = canvas.toDataURL();
19 return canvasData;
20 } catch (e) {
21 canvasData = 'Not supported';
22 return canvasData;
23 }
24 }

Listing 1: Canvas Fingerprinting Code

1
2 function generate_web_gl_data() {
3 try {
4 var gl = canvas.getContext

('webgl') || canvas.getContext('experimental-webgl');
5 var vShaderTemplate = 'attribute vec2

attrVertex;varying vec2 varyinTexCoordinate;uniform vec2
uniformOffset;void main(){varyinTexCoordinate=attrVertex

+uniformOffset;gl_Position=vec4(attrVertex ,0,1);}';
6 var fShaderTemplate = 'precision

mediump float;varying vec2 varyinTexCoordinate;void
main() {gl_FragColor=vec4(varyinTexCoordinate ,0,1);}';

7 var vertexPosBuffer = gl.createBuffer();
8 gl.bindBuffer(gl.ARRAY_BUFFER , vertexPosBuffer);
9 var vertices = new Float32Array

([-.2, -.9, 0, .4, -.26 , 0, 0, .732134444, 0]);
10 gl.bufferData(gl.ARRAY_BUFFER , vertices , gl.STATIC_DRAW);
11 vertexPosBuffer.itemSize = 3;
12 vertexPosBuffer.numItems = 3;

13 var program = gl.createProgram();
14 var vshader = gl.createShader(gl.VERTEX_SHADER);
15 gl.shaderSource(vshader , vShaderTemplate);
16 gl.compileShader(vshader);
17 var fshader = gl.createShader(gl.FRAGMENT_SHADER);

18 gl.shaderSource(fshader , fShaderTemplate);
19 gl.compileShader(fshader);
20 gl.attachShader(program , vshader);
21 gl.attachShader(program , fshader);
22 gl.linkProgram(program);
23 gl.useProgram(program);
24 program.vertexPosAttrib

= gl.getAttribLocation(program , 'attrVertex');
25 program.offsetUniform

= gl.getUniformLocation(program , 'uniformOffset');
26 gl.enableVertexAttribArray(program.vertexPosArray);
27 gl.vertexAttribPointer(program.vertexPosAttrib

, vertexPosBuffer.itemSize , gl.FLOAT , !1, 0, 0);
28 gl.uniform2f(program.offsetUniform , 1, 1);
29 gl.drawArrays(gl.TRIANGLE_STRIP , 0, vertexPosBuffer.numItems);
30
31 if (gl.canvas != null) {
32 return gl.canvas.toDataURL();
33 }
34 else {
35 return 'Not supported';
36 }
37
38 } catch (e) {
39 return 'Not supported';
40 }
41 }

Listing 2: WebGL Fingerprinting Code

1
2 function get_font_list() {
3 var baseFonts = ['serif', 'sans-serif', 'monospace'];
4 // Below is a test font list containing 1043 fonts.
5 var testFonts = ['.Aqua Kana', '.Helvetica LT MM', 'ori1Uni'];
6 var testSize = '72px';
7 var testChar = 'A';
8 var h = document.getElementById('font');
9

10 // Get the width of the text by creating a span
11 var s = document.createElement('span');
12 s.style.fontSize = testSize;
13 s.innerText = testChar;
14 var defaultFonts = {};
15
16 for (var indexBaseFonts in baseFonts) {
17 baseFont = baseFonts[indexBaseFonts];
18 s.style.fontFamily = baseFont;
19
20 if (h) {
21 h.appendChild(s);
22 defaultFonts[baseFont] = {};
23 defaultFonts[baseFont]['offsetWidth'] = s.offsetWidth;
24 defaultFonts[baseFont]['offsetHeight'] = s.offsetHeight;
25 h.removeChild(s);
26 }
27 }
28
29 fontsDetected = {};
30
31 for (var indexFont in testFonts) {
32 font = fonts[indexFont];
33 detected = false;
34 fontStyle = '"' + font + '"';
35
36 for (var indexBaseFonts in baseFonts) {
37 baseFont = baseFonts[indexBaseFonts];
38 // Append base font at the end of test font for fallback
39 s.style.fontFamily = fontStyle + ',' + baseFont;
40
41 if (h) {
42 h.appendChild(s);
43 var match = s.offsetWidth != defaultFonts

[baseFont]['offsetWidth'] || s.offsetHeight
!= defaultFonts[baseFont]['offsetHeight'];

44 h.removeChild(s);
45 detected = detected || match;
46
47 if (detected) {
48 break;
49 }
50 }
51 }
52
53 fontsDetected[font] = detected;
54 }
55
56 return fontsDetected;
57 }

Listing 3: Font List Fingerprinting Code

3792 30th USENIX Security Symposium USENIX Association

	Introduction
	System Description
	Profiling Security Crawlers
	Analysis and Cloaking Vectors
	Browser Anomalies
	Network Data
	Advanced Browser Fingerprints

	Profiling Analysis Results
	Specificity of Advanced Fingerprints
	Diverse Repeated Reporting Experiment

	Evading Security Crawlers
	Phishing Experiments
	Setup
	Results

	User Study Experiment

	Countermeasures
	Discussion
	Related Work
	Conclusion
	Breakdown of MTurk Study Results
	Specific Recommendations
	PhishTank
	Google Safe Browsing

	Evolution of Security Crawlers
	Browser Fingerprinting Code

